Searching for sequencing signal anomalies associated with genome structural variations

Author:

Bezdvornykh I. V1,Cherkasov N. A1,Kanapin A. A1,Samsonova A. A1

Affiliation:

1. St. Petersburg State University

Abstract

Genomic structural variations (SVs) are one of the main sources of genetic diversity. Structural variants as mutagens may have a significant impact on human health and lead to hereditary diseases and cancers. Existing methods of finding structural variants are based on analysis of high-throughput sequencing data and despite significant progress in the development of the detection methods, there is still a need for improving the identification of structural variations with accuracy appropriate for use in a diagnostic procedure. Analysis of the signal of sequencing coverage (i.e., the number of sequencing fragments that aligned to every point of a genome) holds new potential for the design of approaches for structural variations discovery, and can be used as time-series analysis. Here, we present an approach for identification of patterns in the coverage signal. The method has been developed based on algorithms used for analysis of time series data, namely KNN (K-nearest neighbour) search algorithm and the SAX (Symbolic Aggregation Approximation) method. Using the rich dataset encompassing full genomes of 911 individuals with different ethnic backgrounds generated by the Human Genome Diversity Project initiative, we constructed generalized patterns of signal coverage in the vicinity of breakpoints corresponding to various structural variant types. Also, with the benefit of the SAX models of the motifs we developed a software package for fast detection of anomalies in the coverage signal.

Publisher

The Russian Academy of Sciences

Reference24 articles.

1. R. L. Collins, et al., Nature, 581 (7809), 444 (2020).

2. Y. R. Li, et al., Nature Commun., 11 (1), 255 (2020).

3. S. Girirajan, et al., Am. J. Human Genetics, 92 (2), 221 (2013).

4. M. Mahmoud, et al., Genome Biol., 20 (1), 1 (2019).

5. S. Kosugi, et al., Genome Biol., 20 (1), 117 (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3