Structural Evolution of 10% Cr–3% Co Steel Microalloyed with Re and Cu during Creep Au 923 К

Author:

Fedoseeva A. E.1

Affiliation:

1. Belgorod National Research University

Abstract

Structural evolution of the tempered lath martensite of the 10% Cr--3% Co steel microalloyed with rhenium and copper with a low nitrogen content and a high boron content during creep at 923 K was investigated for the purpose of establishment of the rison of decrease in creep resistance of this steel under the low applied stress. The tempered martensite lath structure of 10%Cr-3%Co steel with an average lath size of 370 nm and a high dislocation number density of 2 ×1014 m–2 was observed after normalizing at 1323 K with the following tempering at 1043 K for 3 h. The structure was stabilized by M23C6 carbides, M6C carbides, and NbX carbonitrides. During long-term creep, the lath structure strongly experienced an evolution: the width of the martensitic laths increased significantly, dislocation density decreased, the Laves phase and Cu-enriched particles remarkably coarsen. Such structural evolution correlates with an appearance of creep strength breakdown on curves “Applied stress vs. Time to failure” and “Minimum creep rate vs. Applied stress”. Significant coarsening of the Laves phase particles and Cuenriched particles via formation of the large particles with sizes more than 250 nm along high-angle boundaries and full dissolution of the fine particles with sizes less than 50 nm along low-angle boundaries of martensite laths is considered to be the main cause of degradation of the creep resistance of the steel studied.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3