A Study of Residual Stresses in Steel Plates Obtained by Laser Deposition Directly on a Rigid Substrate

Author:

Rylov S. A.1,Ivanov S. Yu.2,Zemlyakov E. V.2,Babkin K. D.2,Karpov I. D.1,Em V. T.1

Affiliation:

1. National Research Center“Kurchatov Institute”

2. St. Petersburg State Marine Technical University

Abstract

A neutron diffraction method has been used to study residual stresses in corrosion-resistant martensitic steel AISI 410 plates of the composition (wt %): 0.15 С, 13 Cr, 1 Mn, 1 Si, and Fe for balance obtained by direct laser deposition. The plates are deposited on rigid substrates, which are commonly used in practice in the production of large parts. It has been shown that in plates of different thicknesses (2.2 and 7.4 mm) and the same length and width (70 × 30 mm), the patterns of the stress distribution curves are very close, however, the stresses in a 7.4-mm-thick plate are lower than in a 2.2-mm-thick plate. In both plates (2.2/7.4 mm), the maximum normal tensile stresses (~450/350 MPa) are induced near lateral edges of the substrate. The maximum tensile longitudinal stresses (~400/250 MPa) are induced in the middle section of the plate near the upper edge. In the middle section of a 7.4-mm-thick plate, a stress distribution over the thickness is observed: the stresses near the side surfaces are higher than in the middle section. The thickness distribution becomes more uniform by approaching the plate edges. The stress distribution pattern in plates obtained by direct laser deposition strongly depends on the rigidity of the substrate and, to a lesser extent, on the material and deposition technology.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3