The influence of Ni on the contributions of the superplastic deformation mechanisms of the Al–Zn–Mg–Cr alloys

Author:

Yakovtseva O. A.1,Postnikova M. N.1,Irzhak A. V.2,Rofman O. V.1,Mikhaylovskaya A. V.1

Affiliation:

1. National Research Technological University MISiS

2. Institute for Problems of Microelectronics Technology and High-Pure Materials of the Russian Academy of Sciences

Abstract

The Ni influence on the superplastic characteristics, the microstructure evolution and the contributions of the superplastic deformation mechanisms for Al-Zn-Mg-Cr-based alloys have been investigated. The alloys contained dispersoids enriched with Cr, Mg and a minor of Zn of a mean size of 140 nm and in addition the Al3Ni phase in the alloy with nickel. Al3Ni phase increased homogeneity and stablity grain structure during elevated annealing temperature and during superplastic deformation at 440°C. The mean grain size decreases from 7.7 to 7.3 µm before the onset of the deformation and from 10 to 8.6 µm after straining of 0.69. The dislocations aggregations near Al3Ni particles were revealed. The microstructure evolution was compared at the testing condition providing a similar value of the strain rate sensitivity coefficient m≈0.6. The grain boundary sliding contribution is twofold larger and the intragranular dislocation slip is three times smaller in the alloy with Al3Ni particles compared to nickel-free alloy. Al3Ni particles leads to more equiaxed finegrain structure and an increase elongation to failure.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3