Resonant Neutron Reflectometry on a Compact Neutron Source

Author:

Nikova E. S.1,Salamatov Yu. A.1,Kravtsov E. A.12

Affiliation:

1. Miheev Institute of Metal Physics UB RAS

2. Ural Federal University

Abstract

This paper presents an approach to solving the phase problem in neutron reflectometry (including polarized neutron reflectometry) based on the effect of resonant interaction of nuclei of gadolinium isotopes 155Gd and 157Gd with thermal neutrons. This effect is used to implement the reference layer method, which allows, based on the results of three experiments, to calculate the complex reflection coefficient of the sample under study. Knowledge of the complex reflection coefficient makes it possible to model-independent analysis of the interaction potential, both nuclear and magnetic. The main application of this approach is the study of the structure of layers and interfaces, as well as the determination of the magnetic state of multilayer metal nanoheterostructures. The theoretical basis of this method is given, which consists in deposition on the sample top of a gadolinium layer with known parameters, one of which can be varied in a controlled manner. The scheme of the experiment is described in detail using model numerical calculations. An experimental result is given for a simple single-layer niobium sample, for which the modulus and phase of the reflection coefficient were calculated. Promising directions for improving the method and possible directions for further work are proposed. The requests for the characteristics of a compact neutron source, necessary for the optimal implementation of the proposed method, are formulated.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3