Tetraoxa[8]circulene monolayer as hydrogen storage material: model with Boys–Bernardi corrections within density functional theory

Author:

Anikina E. V.1,Babailova D. V.1,Zhilin M. S.1,Beskachko V. P.1

Affiliation:

1. Institute of Natural Sciences and Mathematics, South Ural State University

Abstract

The parameters of molecular hydrogen adsorption on a tetraoxa[8]circulene monolayer were studied using the density functional theory with dispersion interaction corrections (semi-empirical and analytical). The calculations were carried out using two different approaches to the system wave function representation: atomic-like orbital basis set and plane wave basis. Utilizing a less computationally expensive pseudoatomic basis, it is possible to obtain results for molecular hydrogen adsorption consistent with values calculated with plane waves if the atomic-like basis is optimized and basis set superposition error is corrected for both hydrogen binding energy and geometrical characteristics. Otherwise, the H2 binding energy will be overestimated by 4–6 times (sometimes even more, by 20); and the hydrogen-monolayer distance will be underestimated by 10-20%. The obtained optimized parameters of the pseudoatomic basis set can be used for further study of the modified forms of the tetraoxa[8]circulene monolayer. Moreover, our calculations showed that the hydrogen binding to a pristine tetraoxa[8]circulene monolayer is predominantly van der Waals with an energy of 60–90 meV, which is several times less than the desired range of 200–600 meV. To achieve such values, it will be necessary to modify the surface of the monolayer, creating more active sorption cites, for example, by decorating it with metals or applying structural defects.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3