Application of Synchrotron Radiation Diffraction Techniques for Optimizing the Sintering Trajectory of Al<sub>2</sub>O<sub>3</sub>–Ce:(Y,Gd)AG Composite Ceramics

Author:

Zavjalov A. P.12,Kosyanov D. Yu.2

Affiliation:

1. Institute of Solid-State Chemistry and Mechanochemistry SB RAS

2. SEC “Advanced Ceramic Materials”, Far Eastern Federal University

Abstract

The development of most branches of lighting technology poses the challenge of developing advanced high-power white light-emitting diodes. Their design involves the combination of two basic elements – a high-power blue light-emitting diode or a laser diode with a yellow phosphor converter that can withstand high thermal loads. Recently, the development of solid-state (primarily ceramics) phosphors based on Ce:YAG, co-doped with the so-called “red” ions with high thermal conductivity and thermal stability, has been actively pursued. Additionally, the possibility of creating on their basis composite structures with a secondary thermostable phase of corundum α-Al2O3, which has many times higher thermal conductivity at a close coefficient of thermal expansion, is being considered. The development of a sintering map for complex systems based on solid ceramics solutions requires mandatory control of their structural-phase state by X-ray diffraction. However, laboratory equipment is not always sufficient to understand the processes occurring during sintering. Therefore, in this work, on the example of Al2O3–Ce:(Y,Gd)AG biphase ceramics, we optimized the trajectory of their sintering using diffraction of synchrotron radiation. The composites were synthesized by the method of reactive spark plasma sintering of powders of the initial oxides. It is shown that at the fixed applied pressure of 30 MPa and an isothermal holding for 15 min, a single phase of the Ce:(Y,Gd)AG solid solution is formed only at temperatures of at least 1450°C. At such high sintering temperatures, signs of recrystallization are observed due to the proximity of eutectic melting. Increasing the exposure time to 30 min makes it possible to lower the temperature of formation of the biphasic structure to 1425°C and prevent undesirable recrystallization. However, the subsequent increase in pressure to 90 MPa leads to the coexistence of several variations of the YAG-type phase in the system.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3