Stability of Bilateral Discharge in the Ring Laser

Author:

Chirkin M. V.1,Ustinov S. V.1,Mishin V. Yu.1,Serebryakov A. E.1

Affiliation:

1. Ryzan State Radioengineering University

Abstract

A method has been developed for determining the threshold for the development of instability of a gas discharge in a ring helium-neon laser, taking into account the distributed capacitance “positive pole – grounded shield”. In the developed approach to stability analysis, the positive discharge of the column is replaced by an equivalent circuit, a series connection of a negative dynamic resistance ρ and balanced RL-circuits. An equivalent circuit can be synthesized by experimental studies of the linear response of a gas-discharge plasma to weak harmonic perturbations, presented in the form of frequency dependences of the complex resistance Z of a positive column. The calculation of the instability development threshold in the electrical circuit of a two-arm discharge only on the basis of the experimentally recorded frequency dependence of the complex resistance of the positive column does not allow one to extend the quantitative analysis to conditions outside the range of conditions in which the measurements were performed. To overcome this limitation, which hinders the search for the operating current, in which the development of instability is excluded for the entire temperature range of operation of ring helium-neon lasers, a model has been developed that describes the positive column of the gas discharge. The boundary of the unstable state of a two-arm gas discharge in the space of parameters is found: resistance of ballast resistors, temperature, mounting capacitance. The results obtained make it possible to maintain a two-arm DC discharge in a given range of temperature variation.

Publisher

The Russian Academy of Sciences

Reference20 articles.

1. Kolbas Yu.Yu., Grushin M.E., Gorshkov V.N. // Quantum Electronics. 2018. V. 48. № 3. P. 283.

2. Измайлов Е.А., Кухтевич С.Е., Тихомиров В.В., Стафеев Д.В., Фомичев А.В. // Гироскопия и навигация. 2015. № 2. С. 89.

3. Колбас Ю.Ю., Грушин М.Е., Горшков В.Н. // Квантовая электроника. 2018. Т. 48. № 3. С. 283.

4. Грановский В.Л. Электрический ток в газах. Установившийся ток. М.: Наука, 1971.

5. Golubovskii Y.B., Nekuchaev V.O., Porokhova I.A. // Electron Kinetics and Applications of Glow Discharges. Plenum Press, 1998. P. 137.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3