Affiliation:
1. Skobeltsyn Institute of Nuclear Physics of Moscow State University
2. Moscow Aviation Institute (National Research University)
3. Moscow State University of Technology “STANKIN”
Abstract
The effect of irradiation with hydrogen, helium, nitrogen and neon ions with an average energy of 0.8 keV on the surface morphology under magnetron sputtering of a high-modular carbon fiber made of polyacrylonitrile was studied experimentally. In all cases, a whisker-like relief was formed on the surface. The greatest height of whiskers was obtained under irradiation with nitrogen and neon ions, the lowest height and lower density of whiskers was obtained under irradiation with hydrogen ions. Comparison with irradiation of polyacrylonitrile carbon fiber with noble gas and nitrogen ions with energies of 10–30 keV shows that the whisker-like morphology complements the variety of types of ion-induced fiber surface morphology. The results obtained are discussed within the framework of existing models of formation of ion-induced morphological elements on the surface of graphite-like materials. It is assumed that there is a threshold in the number of radiation displacements created in the surface layer, leading to the observed qualitative difference in ion-induced morphology at low and high energies. The evaluations of the displacement profiles for the case of irradiation with hydrogen ions show several-fold fewer displacements than for other ions, which correlates with the observed differences in whiskering by selected ions and whisker growth factors observed in the experiment performed.
Publisher
The Russian Academy of Sciences