Surface Preparation and Investigation of Ohmic Film Contacts Formed by Various Methods to Thermoelements

Author:

Shtern M. Yu.1,Sherchenkov A. A.1,Shtern Yu. I.1,Rogachev M. S.1,Korchagin E. P.1

Affiliation:

1. National Research University of Electronic Technology

Abstract

Methods were proposed and criteria were established for surface preparation of nanostructured thermoelectric materials for deposition of thin and thick film ohmic contacts. The parameters of the mechanical and chemical methods of thermoelectric material surface treatment before the deposition of contacts were established. The roughness and morphology of the surface of thermoelectric material samples and the films obtained have been studied. Criteria and optimal values of surface roughness of thermoelectric materials were established. The conditions of obtaining thin and thick film contacts were determined. Thin film contacts (thickness up to 300 nm) were obtained by magnetron sputtering of Ni. Thick film contacts were formed by chemical and electrochemical deposition of Ni. The obtained films contained various amounts of Ni. The electrical resistivity of Ni films obtained by chemical deposition was significantly higher than that of Ni films obtained by electrochemical deposition. The specific contact resistance of the metal–thermoelectric material system in the case of deposition of Ni films by magnetron sputtering was the smallest among the considered samples. And in the case of forming contacts by chemical deposition, it is comparable to that for Ni films formed by electrochemical deposition. The adhesion strength of Ni films obtained by various methods has high values exceeding the industry standard for film coatings in microelectronics. All obtained ohmic contacts satisfy the requirements for the construction of the efficient thermoelements by the electrical properties and adhesive strength.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3