Resonance Effects in Photoemission Spectroscopy of Rare-Earths in Intermetallic Compound La<sub>0.73</sub>Tb<sub>0.27</sub>Mn<sub>2</sub>Si<sub>2</sub>

Author:

Ponomareva E. A.1,Korkh Yu. V.1,Grebennikov V. I.12,Gerasimov E. G.13,Mushnikov N. V.13,Kuznetsova T. V.13

Affiliation:

1. M.N. Miheev Institute of Metal Physics UB RAS

2. Ural State University of Railway Transport

3. Ural Federal University

Abstract

The electronic structure of the rare-earth intermetallic compound La0.73Tb0.27Mn2Si2 has been studied by resonant photoemission spectroscopy using synchrotron radiation, and its formation patterns have been established upon partial replacement of lanthanum atoms by terbium. The dependence of the valence band spectra shape on the photon energy near the absorption edges of the internal levels of manganese, lanthanum, and terbium is analysed. The processes of direct and two-stage production of photoelectrons, elastic and inelastic decay channels of these states with the emission of high-energy electrons due to intra-atomic Coulomb interaction have been studied. The dominant mechanisms of the decay of the excited states of the components under study were determined from the shapes of the spectra. For rare-earth metals elastic decay channel of the excited state is the most probable, while for manganese, it is inelastic, with the formation of a second hole in the valence band with subsequent enhancement of photoemission. Exciting photoemission near M5-absorption edges of rare-earth elements, the main contribution to the valence band comes from terbium 4f-states. Exciting photoemission near L3-absorption edge of manganese, the main contribution to the valence band is made by manganese 3d-states; with an increase in the photon energy in the region after resonance, an Auger channel for the decay of the excited state arises in the form of intensity maximum shift towards the binding energy growth. Features of the topography and magnetic domain structure of the La0.73Tb0.27Mn2Si2 surface were studied by atomic force and magnetic force microscopy at room temperature.

Publisher

The Russian Academy of Sciences

Reference20 articles.

1. Szytula A., Lecieijewicz J. Handbook on Physics and Chemistry of Rare Earths, V. 12 / Ed. Gschneidner K.A., Jr., Eyring L. Amsterdam: North Holland, 1989.

2. lvanov V., Szytula A. // J. Alloys Compd. 1997. V. 262–263. P. 253. https://www.doi.org/10.1016/S0925-8388(97)00392-7

3. Kolmakova N.P., Sidorenko A.A., Levitin R.Z. // Low Temp. Phys. 2002. V. 28. № 8. P. 653. https://www.doi.org/10.1063/1.1511711

4. Miloud Abid O., Yakoubi A., Tadjer A., Khenata R., Ahmed R., Murtaza G., Bin Omran S., Sikander Azam // J. Alloys Compd. 2014. V. 616. P. 475. https://www.doi.org/10.1016/j.jallcom.2014.07.146

5. Gerasimov E.G., Mushnikov N.V., Goto T. // Phys. Rev. B. 2005. V. 72. P. 064446. https://www.doi.org/10.1103/PhysRevB.72.064446

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3