Сomposites with a Matrix Based on Niobium and Molybdenum Reinforced with Sapphire Fibers

Author:

Kiiko V. M.1,Korzhov V. P.1,Kurlov V. N.1

Affiliation:

1. Institute of Solid State Physics of Russian Academy of Sciences

Abstract

Single-crystal sapphire fibers were obtained by the Stepanov method/EFG – Edge defined Film-fed Growth. The procedure for obtaining them is described. Mechanical testings of the fibers were carried out according to the presented scheme, and the dependences of the ultimate deformation and strength of the fibers on the length were determined. The dependences are power-law, and decrease with the length of the fibers. The strength of the obtained fibers corresponds to the world level and meets the conditions for their use as reinforcing for high-temperature composite materials. From workpieces containing layer-by-layer unidirectionally arranged sapphire fibers, niobium powder, metal foils of molybdenum and aluminum, layered-fibrous composites were obtained by solid-phase diffusion welding under load. Using scanning electron microscopy with X-ray analysis, the structure of the composites was studied, it was found that, in addition to the initial components, it includes intermetallic compounds of niobium, molybdenum and aluminum, as well as solid solutions of these metals formed in the technological process. As a result of mechanical testing of composite samples, deformation curves of load-deflection dependences were obtained, which, together with developed fracture surfaces, indicate the non-brittle nature of the fracture of composites containing brittle components. The dependences of the strength of composites on temperature in the range of 20–1400°C are obtained, which meet the requirements for high-temperature structural materials of this kind.

Publisher

The Russian Academy of Sciences

Reference23 articles.

1. Kelly A., Tyson W.R. // J. Mechanics Phys. Solids. 1965. V. 13. Iss. 6. P. 329. https://www.doi.org/10.1016/0022-5096(65)90035-9

2. Келли A. // Наука – производству. 2007. № 2. С. 1.

3. Милейко С.Т. // Наука – производству. 2007. № 2. С. 10.

4. Karpov M.I., Vnukov V.I., Stroganova T.S., Prokhorov D.V., Zheltyakova I.S., Gnesin B.A., Kiiko V.M., Svetlov I.L. // Bull. RAS: Phys. 2019. V. 83. Iss. 10. P. 1235. https://doi.org/10.3103/S1062873819100113

5. Свойства, получение и применение тугоплавких соединений / Ред. Косолапова Т.Я. и др. М.: Металлургия, 1986. 928 с.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3