Prediction of the boroaluminized layer thickness using an artificial neural network

Author:

Mishigdorzhiyn U. L.1,Dyshenov B. A.1,Semenov A. P.1,Ulakhanov N. S.1,Markhadayev B. E.1

Affiliation:

1. Institute of Physical Material Science SB RAS

Abstract

The application of mathematical models of artificial neural networks for predicting the properties of diffusion layers created by thermal-chemical treatment based on the boroaluminizing process was considered. Formalization and analysis of prediction of experimental results were carried out. It was established that the construction of computer prediction models based on experimental data of boroaluminizing was a solvable problem with high precision when using artificial neural networks of the multilayer perceptron type. Thus, testing the number of hidden layers and the number of neurons in them revealed the highest correlation coefficient R = 0.99993 of the artificial neural network using two hidden layers with ten and six neurons, respectively. The highest efficiency can be achieved using the “hyperbolic tangent” activation function.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3