Affiliation:
1. Belarusian State University
2. Institute of Nuclear Physics
3. Beijing Institute of Technology
Abstract
The aim of this work is to study the effect of irradiation with low-energy helium ions with a fluence 2 × 1017 cm–2 and an energy of 40 keV on the structural-phase state of multicomponent solid solutions based on V–Nb–Ta–Ti. These studies are aimed at obtaining new data on the radiation resistance of multicomponent solid solutions, which have great potential for use as structural materials for new generation reactors. As a result of the work carried out by scanning electron microscopy and X-ray diffraction analysis, it was found that all alloys of the system belong to equiatomic single-phase solid solutions and in the initial state, have a homogeneous distribution of elements on the surface and have compressive micro- and macro-stresses. The conducted studies have shown that irradiation with helium ions of alloys of the V–Nb–Ta–Ti system does not lead to the decay of the solid solution and disturbance of the equiatomicity and uniformity of the distribution of elements on the surface. Irradiation with helium ions does not lead to a significant change in the level of micro- and macro-stresses for VNb and VNbTa systems, while for VNbTaTi alloy there is an increase in compressive stresses, which may be due to the segregation of elements and the accumulation of helium-vacancy clusters.
Publisher
The Russian Academy of Sciences