Changes in the Morphology and Strength Properties of the Vanadium Surface under the Influence of Helium Ions and Pulsed Laser Irradiation

Author:

Borovitskaya I. V.1,Korshunov S. N.2,Mansurova А. N.2,Bondarenko G. G.3,Gaidar A. I.4,Matveev E. V.4,Kazilin E. E.1

Affiliation:

1. A.A. Baikov Institute of Metallurgy and Material Science RAS

2. National Research Center “Kurchatov Institute”

3. National Research University Higher School of Economics

4. Research Institute of Advanced Materials and Technology

Abstract

The effect of high-power pulsed laser irradiation generated in a GOS 1001 installation in the Q-switched mode (power density q = 1.2 × 1012 W/m2, pulse duration τ0 = 50 ns, number of pulses N = 1–4) in vacuum on a porous structure of the vanadium sample surface is studied, as well as on its hardness determined in two ways based on the recovered print method and on the kinetic indentation method. The porous structure is formed during implantation of helium ions (energy 30 keV, dose 2.0 × 1023 m–2, ion flux density 4.8 × 1018 m–2 · s–1, temperature ~500 K). It is shown that irradiation with helium ions causes vanadium hardening by about a factor of two, and the microhardness values determined by the recovered print method are slightly lower than the kinetic hardness values. It is found that in both cases, as a result of the target destruction under the laser radiation, a crater appears, surrounded by a breastwork, behind which there is a zone of thermal influence. Erosion is observed in this zone, caused by the destruction of the domes of bubbles-blisters filled with implanted helium and impurity atoms (C, O, N) present in the liquid metal. It is found that with an increase in the number of laser pulses, the microhardness in the crater decreases, while the narrow area around it hardens, and with further distance from the crater, the microhardness approaches values corresponding to that of vanadium implanted with helium ions.

Publisher

The Russian Academy of Sciences

Reference18 articles.

1. Гусева М.И., Мартыненко Ю.В. // Успехи физических наук. 1981. Т. 135. Вып. 4. С. 671.

2. Бондаренко Г.Г. Радиационная физика, структура и прочность твердых тел: учебное пособие. М.: Лаборатория знаний, 2016. 462 с.

3. Боровицкая И.В., Коршунов С.Н., Мансурова А.Н. и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 5. С. 56.

4. Боровицкая И.В., Коршунов С.Н., Мансурова А.Н. и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 4. С. 25.

5. Гусев В.М., Бушаров Н.П., Нафтулин С.М., Проничев А.М. // Приборы и техника эксперимента. 1969. Т. 4. С. 19.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3