Affiliation:
1. Institute for Nuclear Research Russian Academy of Sciences
2. Moscow Institute of Physics and Technology (National Research University)
Abstract
Beam diagnostics is one of the main tasks during operation of charged particle accelerators. The paper presents a concept of a beam instrumentation system that provides diagnostic procedures and allows to measure and adjust the clue beam parameters in a linear resonant proton accelerator of a compact neutron source DARIA: current, position, profile, emittance, energy, phase characteristics. An important requirement is to provide measurements during the accelerator tuning procedure, when the beam parameters can be changed in a wide range. It is proposed to include in the main structure of the system such types of diagnostic devices as beam current transformers, stripline beam position monitors, wire scanners, ionization beam cross-section monitor, slit emittance meter, bunch shape monitor, water-cooled Faraday cup. A particular attention is paid to a non-destructive method due to a high pulse and average beam intensity in conjunction with a relatively low beam energy to provide continuous operational control of the beam parameters. Main physical principles of operation, typical characteristics, as well as features of the practical implementation of the devices are included. A possible arrangement layout of diagnostic units along the accelerator is proposed, taking into account peculiarities of using the proposed types of detectors in various parts of the accelerator.
Publisher
The Russian Academy of Sciences
Reference20 articles.
1. Kropachev G., Kulevoy T., Sitnikov A. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2019. V. 13. № 6. P. 1126. https://www.doi.org/10.1134/S1027451019060399
2. Blokland W. Beam Current Monitors // Proceedings of USPAS and University New Mexico Albuquerque NM, June 23–26, 2009. P. 40.
3. Bayle H. Effective Shielding to Measure beam current from an ion source // Review of Scientific Instruments. 2014. V. 85. P. 02A713.
4. Barnes M., Ducimetiere L. Ferrite Materials for In-Vacuum Instruments. // Proceedings of ARIES Workshop” Materials and Engineering Technologies for Particle Accelerator Beam Diagnostics Instruments”, 2021.
5. Sosa A., Bravin E, Cantero Esteban, Welsch Carsten. Optimization of a Short Faraday Cup for Low-Energy Ions using Numerical Simulations // International Beam Instrumentation Conference, IBIC 2014, January 2014. P. 137. https://www.researchgate.net/publication/287050743_ Optimization_of_a_short_faraday_cup_for_low-energy_ions_using_numerical_simulations.