Affiliation:
1. National Research Tomsk Polytechnic University
Abstract
Cr coatings with multilayer barrier composed of alternating ZrO2 and Cr layers with an individual thickness of each layer of 50 and 250 nm were prepared onto substrates made from zirconium E110 alloy using magnetron sputtering. The protective multilayer ZrO2/Cr coating on zirconium E110 alloy were studied under high-temperature oxidation in air at a temperature of 1100°C for 10, 20, 30 and 40 min. The lower rate of change in weight gain of samples having ZrO2/Cr barriers was found in comparison with samples coated by chromium during long-term oxidation tests. Diffraction measurements of samples were done under linear heating (50°С/min) in a range of temperature of 25–1250°С and next isothermal treatment for 20 min under high vacuum (10–3 Pa) using the in situ diffraction. It was found that the mutual diffusion of Cr-Zr at the interface between the protective coating having the multilayer barrier composed of alternating ZrO2 and Cr layers and zirconium alloy can be slowed down. This results in the retention of high content of α-Cr phase in the coating and, as a result, in the increase of the duration of the protective state of E110 alloy under the high-temperature oxidation in air.
Publisher
The Russian Academy of Sciences
Reference20 articles.
1. Brachet J.C., Rouesne E., Guilbert T. et al. // Corrosion Sci. 2020. V. 167. P. 108537. https://www.doi.org/10.1016/j.corsci.2020.108537
2. Krejcí J., Kabatova J., Manoch F. et al. // Nucl. Engineer. Technol. 2020. V. 52. Iss. 3. P. 597. https://www.doi.org/10.1016/j.net.2019.08.015
3. Park J.H., Kim H.-G., Park J. et al. // Surf. Coat. Technol. 2015. V. 280. P. 256. https://www.doi.org/10.1016/j.surfcoat.2015.09.022
4. Chen H., Wang X., Zhang R. // Coatings. 2020. V. 10. № 9. P. 808. https://www.doi.org/10.3390/coatings100908085
5. Tang C., Stueber M., Seifert H.J., Steinbrueck M. // Corrosion Rev. 2017. V. 35. P. 141. https://www.doi.org/10.1515/corrrev-2017-0010