Temperature and Pressure Sensors of the Meteorological Complex for the Study of the Mars’s Atmosphere

Author:

Lipatov A. N.1,Ekonomov A. P.1,Makarov V. S.1,Lesnykh V. A.1,Goretov V. A.1,Zakharkin G. V.1,Zaitsev M. A.1,Khlyustova L. I.1,Antonenko S. A.1

Affiliation:

1. Space Research Institute, Russian Academy of Sciences, Moscow, Russia

Abstract

Temperature and pressure sensors, which are part of the ExoMars-2022 landing platform (LP) meteorological complex, are designed to measure the main parameters of the Martian atmosphere: temperature, pressure, and vertical component of wind speed. Temperature and pressure measurements begin during the descent, after the separation of the lower hemisphere, when the height above the surface will be from 2.1 to 8.5 km, depending on the descent trajectory. Above, before opening the parachute, the vertical profile of the atmosphere can be obtained using the accelerometer block, which is also part of the meteorological complex. After landing, a long-term monitoring of the near-surface layer of the atmosphere is carried out. Measurements are taken at different heights from the surface. Taking into account the measurement of the vertical component of the wind after landing, the local surface-to-atmosphere heat flux is calculated. The measurements make it possible to obtain the dynamics of the interaction between the atmosphere and the surface. In the paper we considered the scientific problems solved by the sensors, briefly described the measurement program and described in detail the sensors and their characteristics

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3