Effects of Plant Acclimation on Electron Transport in Chloroplast Membranes of <i>Cucumis sativus</i> and <i>Cucumis melo</i>

Author:

Benkov M. A.1,Suslichenko I. S.1,Trubitsin B. V.1,Tikhonov A. N.1

Affiliation:

1. Faculty of Physics, M.V. Lomonosov Moscow State University

Abstract

In this work, we have studied photosynthetic electron transport in chloroplasts of two “contrasting” species of Cucumis genus, the shade-tolerant species Cucumis sativus (cucumber) and the light-loving species Cucumis melo (melon). Plants were acclimated to moderate (50–125 μmole photons m−2 s−1) or high light (850–1000 μmole photons m−2 s−1). Parameters of a fast induction of chlorophyll a fluorescence, emitted from photosystem 2 (PS2), were determined using a conventional OJIP test. For monitoring the turnover of photosystem 1 (PS1) reaction centers \({\text{{Р}}}_{{700}}^{ + }\), we used electron paramagnetic resonance. The shade-tolerant (C. sativus) and light-loving (C. melo) species, acclimation to high or low light irradiation, revealed substantial difference in their response to variations of light intensity. Photosynthetic activity of shade-tolerant species C. sativus revealed higher sensitivity to light intensity during acclimation as compared to C. melo. In the course of the long-term acclimation (more than 2 months) of С. sativum to high light (≥ 500 μmole photons m−2 m−1), a photochemical activity of PS2 decreased. This was not the case, however, for leaves of C. melo. In С. sativus leaves, a decrease in photochemical activity of PS2 caused by acclimation to high light was reversible, demonstrating the recovery after the attenuation of irradiation intensity. Plants of both species acclimated to high and low light also revealed significant differences in the two-phase kinetics of \({\text{{Р}}}_{{700}}^{ + }\) redox transients. In the leaves of plants acclimated to strong light, we observed a lag-phase in the kinetics of \({\text{{Р}}}_{{700}}^{ + }\) photooxidation that could be attributed to cyclic electron transport (CET) around PS1. The ratio of the signals induced by white light and far-red light (707 nm) was higher in plants acclimated to strong light. This effect can be explained by the enhancement of CET and optimization of the energy balance at excess of light, protecting plants from oxidative stress. The data obtained are discussed in the context of the problem of photosynthesis optimization upon fluctuations of light intensity.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3