Affiliation:
1. Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences
Abstract
The effect of exogenous auxin on the fatty acid composition of total lipids in leaves and roots of spring wheat seedlings (Triticum aestivum L.) was studied. It has been established that the diversity of fatty acids in vegetative organs (leaf or root) depends not only on the concentration of auxin, but also on the nitric oxide donor (N2, NO3). It was noted that increasing the concentration of exogenous auxin increased microviscosity and decreased the permeability of the membranes of the vegetative organ in wheat, which was accompanied by a decrease in the double bond index. At the same time, there is an increase in the concentration of saturated fatty acids (palmitic and stearic), which are used as precursors for the formation of fatty acids with a very long chain (VLCFA). It was shown that exogenous auxin leads to an increase in the total content of VLCFAs in leaves with a deficiency (8.4%) and an excess of NO donors (12.3%). The introduction of exogenous auxin eliminates significant differences in the activity of desaturases in wheat roots at different levels of nitric oxide donors. It is suggested that the biosynthesis of docosadienoic acid (C22:2) in leaves is one of the key stages in the formation of an adaptive response of cell membranes to abiotic stresses during plant ontogenesis. An increase in the level of NO promotes the movement of auxin from roots to shoots, which can serve as a regulator of the activity of elongases and desaturases during the synthesis of VLCFAs.
Publisher
The Russian Academy of Sciences
Reference31 articles.
1. Озолина Н.В., Гурина В.В., Нестеркина И.С., Дударева Л.В., Катышев А.И., Нурминский В.Н. 2017. Жирнокислотный состав общих липидов вакуолярной мембраны при абиотическом стрессе. Биол. мембраны. 34 (1), 63–69.
2. Дёмин И.Н., Нарайкина Н.В., Цыдендамбаев В.Д., Мошков И.Е., Трунова Т.И. 2008. Введение гена desA Δ12-ацил-липидной десатуразы цианобактерий повышают устойчивость растений картофеля к окислительному стрессу, вызванному гипотермией. Физиол. растений. 55 (5), 710–720.
3. Макаренко С.П., Дударева Л.В., Катышев А.И., Коненкина Т.А., Назарова А.В., Рудиковская Е.Г., Соколова Н.А., Черникова В.В., Константинов Ю.М. 2010. Влияние низких температур на жирнокислотный состав контрастных по холодоустойчивости видов злаков. Биол. мембраны. 27 (6), 482–488.
4. Zemanova V., Pavlik M., Kyjakova P., Pavlikova D. 2015. Fatty acid profiles of ecotypes of hyperaccumulator Noccaea caerulescens growing under cadmium stress. J. Plant Physiol. 180, 27–34.
5. Dat J., Vandenabeele S., Vranjva E., van Montagu M., Inze D., van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57, 779–795.