Antifungal and Reactivation Activity of a Novel Glycine/histidine-rich Linear Peptide from Dog-grass (<i>Elytrigiarepens</i> (L.) Desv. ex Nevski) EARS

Author:

Ryazantsev D. Yu.1,Khodzhaev E. Yu.2,Kuvarina A. E.3,Barashkova A. S.1,Rogozhin E. A.13

Affiliation:

1. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry

2. Lomonosov Moscow State University

3. Gause Institute New Antibiotics

Abstract

Using a combination of solid-phase extraction, affinity chromatography, and analytical reverse-phase HPLC, a new linear peptide was isolated from dog-grass (Elytrigia repens) ears, which does not contain cysteine residues. Identification of its primary structure by Edman automated degradation made it possible to reveal the presence of several polyglycine regions, each consisting of 6–8 residues, between which short fragments consisting of polar amino acid residues are localized. The C-terminal fragment of the molecule is a positively charged site enriched in arginine and histidine residues. The structural features of this peptide determine its functionality. Thus, checking the presence of antimicrobial properties in its recombinant analogue, obtained by heterologous expression in a prokaryotic system, made it possible to determine the MIC for the tested fungal cultures only at sufficiently high active concentrations (52–104 μM). However, this compound had regulatory properties: at a concentration of 25 μM, a reactivating effect was noted, which increased the level of survival of Saccharomyces cerevisiae to UV-irradiation. The data obtained expand the understanding of the functional features of plant defense peptides of an unusual structural type.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3