Measurement of Soil Organic Carbon Pools Isolated Using Bio-Physical-Chemical Fractionation Methods

Author:

Semenov V. M.1,Lebedeva T. N.1,Sokolov D. A.1,Zinyakova N. B.1,Lopes de Gerenu V. O.1,Semenov M. V.2

Affiliation:

1. Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

2. Dokuchaev Soil Science Institute, Russian Academy of Sciences

Abstract

The studies were performed with samples from different horizons of soddy podzolic soil (Albic Retisol) and typical chernozem (Haplic Chernozems) collected under natural lands and arable fields. The carbon contents in structural (particulate organic matter of 2-0.05 mm in size (CPOM) and mineral-associated organic matter of 0.05 mm in size (CMAOM)) and process (potentially mineralizable organic matter (C0) and microbial biomass (Cmic)) pools were determined. In the humus horizon of virgin and arable sod-podzolic soils, the CPOM, CMAOM, C0, and Cmic pools contained 38 and 24, 56 and 72, 5.9 and 5.6, 1.2 and 1.3% of Corg, respectively. The sizes of these pools in virgin and arable chernozem were 42 and 30, 53 and 68, 3.6 and 2.8, 0.5 and 0.5% of Corg, respectively. The emission potential of CPOM pool despite the small mass of the POM fraction was comparable to CMAOM pool having the large MAOM fraction. A method for quantitative separation of soil organic matter (SOM) into active, intermediate (slow), and passive pools has been proposed. The size of the SOM active pool were determined based on the Сmic and C0 contents, and the size of the passive pool were measured by the chemically non-oxidizable organic matter in POM and MAOM fractions. The intermediate pool size was calculated by the difference between the total organic carbon and the sum of the active and passive pools. The active, intermediate and passive pools of the studied soils contained 1–7, 51–81 and 13–48% of Сorg, respectively without any significant between different land uses.

Publisher

The Russian Academy of Sciences

Reference83 articles.

1. Ананьева Н.Д., Сусьян Е.А., Гавриленко Е.Г. Особенности определения углерода микробной биомассы почвы методом субстрат-индуцированного дыхания // Почвоведение. 2011. № 11. С. 1327–1333.

2. Артемьева З.С. Органическое вещество и гранулометрическая система почвы. М.: ГЕОС, 2010. 240 с.

3. Дымов А.А., Милановский Е.Ю., Холодов В.А. Состав и гидрофобные свойства органического вещества денсиметрических фракций почв Приполярного Урала // Почвоведение. 2015. № 11. С. 1335–1345. https://doi.org/10.7868/S0032180X15110052

4. Когут Б.М. Принципы и методы оценки содержания трансформируемого органического вещества в пахотных почвах // Почвоведение. 2003. № 3. С. 308–316.

5. Когут Б.М., Семенов В.М., Артемьева З.С., Данченко Н.Н. Дегумусирование и почвенная секвестрация углерода // Агрохимия. 2021. № 5. С. 3–13. https://doi.org/10.31857/S0002188121050070

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3