Environmental Variables in Predictive Soil Mapping

Author:

Shary P. A.1

Affiliation:

1. Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

Abstract

In the well-known conceptual model SCORPAN, given soil property is considered as dependent on the following environmental factors: soil, climate, organisms, topography, time and space. Predictive mapping of soils in digital soil mapping is based on similar ideas, but environmental factors may include not only factors of soils formation, but also, for example, remote sensing data, and have found a wide distribution not only in soil science, but also in ecology, agriculture and geomorphology. This paper provides a review of environmental factors that are used in predictive mapping with a special attention to situations when wide sets of environmental factors may be used and a part of them is not quantitative, such as vegetation types. Most developed are systems of quantitative variables for topography and climate description, so that a special attention is paid to them. Land surface description is performed using both local and non-local variables that need integration. In climate description variables are essential that estimate dry or wet terrain features, such as moisture ratio or water deficit. They need evaluation of potential evapotranspiration that is not measured by meteo-stations, but may be calculated. Possibilities of accounting these and other environmental factors including non-quantitative ones in quantitative statistical models of predictive mapping are described together with principles of their construction, verification, comparison, choice of appropriate models. Examples of soil predictive mapping applications are given for various scales, their specifics for different scales is outlined. Some aspects of remote sensing data usage are discussed.

Publisher

The Russian Academy of Sciences

Reference66 articles.

1. Алексеев А.О., Митенко Г.В., Шарый П.А. Количественные оценки палеоэкологических изменений в позднем голоцене на юге Восточно-Европейской равнины на основе магнитных свойств почв // Почвоведение. 2020. № 12. С. 1425–1435. https://doi.org/10.31857/S0032180X20120023

2. Барталев С.А., Егоров В.А., Жарко В.О., Лупян Е.А., Плотников Д.Е., Хвостиков С.А., Шабанов Н.В. Спутниковое картографирование растительного покрова России. М.: ИКИ РАН, 2016. 208 с.

3. Будыко М.И. Тепловой баланс земной поверхности. Л.: Гидрометеоиздат, 1956. 256 с.

4. Гаусс К.Ф. Общие исследования о кривых поверхностях // Об основаниях геометрии. М.: Гос. изд-во технико-теоретической литературы, 1956. С. 123–161.

5. Докучаев В.В. Русский чернозем // Избр. соч. М.: Сельхозгиз, 1948. Т. 1. 480 с.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3