Delopment of Composite Carbon–Silicate Materials, Their Research and Testing for the Preparation of Heterogeneous Biocatalysts for Low-Temperature Synthesis of Esters

Author:

Kovalenko G. A.1,Perminova L. V.1,Goidin V. V.1,Zavorin A. V.1,Moseenkov S. I.1,Kuznetsov V. L.1

Affiliation:

1. Boreskov Institute of Catalysis SB RAS

Abstract

Composite carbon–silica materials (CCSM), differing in the content of carbon and silica components, were obtained using two silicon dioxide precursors (silica sol and silane) and multi-walled carbon nanotubes (MWNTs). At the initial stage of obtaining CCSM by method 1, impregnation of finely dispersed MWCNT powder with silica sol was used, method 2 was carried out using treatment of MWCNTs with tetraethoxysilane followed by hydrolysis and polycondensation. The content of silica (SiO2) in the composites varied from 3 to 60 wt %. After drying and appropriate heat treatment at 250–350°C, the composite materials were studied by various physicochemical methods: nitrogen porosimetry, electron microscopy, X-ray fluorescence analysis, and synchronous thermal analysis. Significant differences in parameters were found depending on the chemical composition of CСSM, including textural characteristics. Thus, with an increase in the SiO2 content, the specific surface area of composite materials increased (by a factor of 2), and maxima were observed on the distribution curves over pore diameters (at 20–40 nm).The composite carbon–silica materials were tested as adsorbent for the preparation of heterogeneous biocatalysts (BC) for the low-temperature synthesis of esters; the active component of these BC was lipase immobilized exclusively on the carbon surface of nanotubes. With a decrease in the content of MWCNTs in the composite materials, the enzymatic activity and operational stability of biocatalysts, measured in the reaction of esterification of heptanoic acid (C7) with butanol (C4), decreased monotonically, reaching a 2–8-fold drop in activity at the maximum content of SiO2 (58 wt %).

Publisher

The Russian Academy of Sciences

Reference33 articles.

1. Жукалин Д.А., Тучин А.В., Голощапов Д.А., Битюцкая Л.А. // Письма в ЖТФ. 2015. Т. 41. № 4. С. 1.

2. Иванов С.И., Цыганков П.Ю., Худеев Н.В., Меньшутина Н.В. // Успехи в химии и химической технологии. 2015. Т. 29. № 4. С. 83.

3. Белоус Д.Д., Макарова И.С., Цыганков П.Ю., Гордиенко М.Г., Конькова Т.В. // Успехи в химии и химической технологии. 2017. Т. 31. № 6. С. 124.

4. Худеев И.И., Цыганков П.Ю., Смирнова О.А., Иванов С.И., Меньшутина Н.В. // Успехи в химии и химической технологии. 2017. Т. 31. № 6. С. 118–120.

5. Климов Е.С., Бузаева М.В., Давыдова О.А., Исаев А.В., Нищев К.Н., Пыненков А.А., Калашников Е.Г., Фомин А.Н., Светухин В.В. // Журнал прикладной химии. 2015. Т. 88. № 8. С. 1105.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3