Palladium-Containing Catalysts Based on Functionalized CNFs for the Dehydrogenation of Methylcyclohexane

Author:

Veselov G. B.1,Shivtsov D. M.1,Afonnikova S. D.1,Mishakov I. V.1,Vedyagin A. A.1

Affiliation:

1. Boreskov Institute of Catalysis

Abstract

The activity of palladium-containing catalysts based on functionalized carbon nanofibers prepared by an incipient wetness impregnation method in the dehydrogenation reaction of methylcyclohexane was investigated. Methylcyclohexane is considered as one of the most promising liquid hydrogen carriers. The dependence of the catalytic characteristics of the samples on the functionalization conditions of carbon nanofibers has been studied. By temperature-programmed desorption, it was shown that an increase in the treatment time of carbon nanofibers in concentrated nitric acid from 1 to 3 h increases the number of hydroxyl groups on their surface, and treatment for 6 h contributes to a rise in the concentration of carboxyl groups and their derivatives (esters and anhydrides). Additional calcination of the functionalized nanofibers in an inert atmosphere at 530°C yielded a sample containing predominantly hydroxyl groups. The presence of hydroxyl groups on the surface of the carbon material has a positive effect on the performance of the catalysts, while the presence of carboxyl groups leads to a decrease in the yield of toluene. It is assumed that the observed differences in catalyst activity are due to differences in dispersion and localization of palladium particles.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3