Novel Two-Stage Method of Preparing Graphitic Carbon Nitride Doped by Chlorine for Photocatalytic Hydrogen Evolution and Photocurrent Generation

Author:

Zhurenok A. V.1,Markovskaya D. V.1,Potapenko K. O.1,Sidorenko N. D.1,Cherepanova S. V.1,Saraev A. A.1,Gerasimov E. Y.1,Kozlova E. A.1

Affiliation:

1. Federal Research Center Boreskov Institute of Catalysis

Abstract

In this work graphitic carbon nitride doped by chlorine was prepared by a two-stage technique at first. At the first stage melamine was hydrothermally treated with glucose, at the second stage the mixture of as-prepared melamine with ammonium chloride was calcined. The obtained samples were investigated by the set of methods: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy, photoelectrochemical methods. All prepared photocatalysts was tested in the reaction of photocatalytic hydrogen production from basic solutions of triethanolamine. It was shown that the highest values of the catalytic activity and short-circuit current density were obtained over the photocatalyst preparing by calcination of the mixture containing 30% ammonium chloride and 70% melamine. The highest value of the catalytic activity was 1332 μmol h–1 g–1 and was more than the catalytic activity of carbon nitride preparing by the melamine calcination without another treatment in 22 times.

Publisher

The Russian Academy of Sciences

Reference41 articles.

1. Hosseini S.E., Wahid M.A., Jamil M.M., Azli A.A., Misbah M.F. // Int. J. Energy Res. 2015. V. 39. P. 1597.

2. Abuadala A., Dincer I. // Int. J. Energy Res. 2012. V. 36. P. 415.

3. Arachchige S.M., Brewer K.J. / Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley, 2011. https://onlinelibrary.wiley.com/doi/10.1002/9781119951438.eibc0458

4. Heterogeneous Catalysis at Nanoscale for Energy Applications. Eds. Tao F., Schneider W.F., Kamat P.V., Wiley, 2014. 326 p.

5. Acar C., Dincer I., Zamfirescu C. // Int. J. Energy Res. 2014. V. 38. P. 1903.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3