Room Temperature Oxidation of Graphite by Nitrogen Dioxide with the Participation of Nanoparticles of Platinum Group Metals

Author:

Smirnov M. Yu.1,Kalinkin A. V.1,Sorokin A. M.1,Salanov A. N.1,Bukhtiyarov V. I.1

Affiliation:

1. Boreskov Institute of Catalysis SB RAS

Abstract

This paper presents a review of the results obtained in studying the room temperature interaction of NO2 with model systems prepared by vacuum deposition of platinum group metals on the surface of highly oriented pyrolytic graphite (M/HOPG, M = Pt, Pd, Rh) at pressure of 10–6–10–4 mbar. Particular attention was focused on establishing the chemical state of the supported metal particles and carbon support using X-ray photoelectron spectroscopy (XPS). Before treatment in NO2, M/HOPG samples were characterized by scanning tunneling and/or scanning electron microscopy (STM and SEM). Upon interaction with NO2, supported palladium and rhodium remained in the metallic state and, at the same time, exhibited catalytic activity in the oxidation of graphite. The process was accompanied by the destruction of ≥10–15 graphene layers with the penetration of metal particles deep into the carbon support. Rhodium was less active in the oxidation of graphite compared to palladium due to the filling of its surface with NO molecules arising from the dissociation of NO2. When the samples with deposited platinum were treated in NO2, the carbon support underwent minimal changes without disturbing its original structure. Platinum retained its metallic state when deposited on the surface of graphite annealed in vacuum and was oxidized to PtO and PtO2 oxides on the surface activated by etching with argon ions. Based on the results obtained, a mechanism was proposed for the room temperature interaction of M/HOPG systems with NO2.

Publisher

The Russian Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3