Current Hydrological Regime of the Volga Reservoirs

Author:

Poddubnyi S. A.1,Zakonnova A. V.1,Tsvetkov A. I.1,Trofinmenko L. T.2,Shvets’ N. V.2

Affiliation:

1. Papanin Institute of Inland Water Biology, Russian Academy of Sciences, 152742, Borok Settl., Yaroslavl oblast, Russia

2. Russian Institute of Hydrometeorological Information–World Data Center, 249035, Obninsk, Russia

Abstract

The study is focused on variations of air temperature in the basin of the Volga reservoirs, the total inflow into the water bodies, their water exchange, water level and temperature, and the heat content of water mass in open-water period under various climate conditions. The object of the analysis is the long-term series of hydrometeorological data processed by statistical methods. It is shown that the present-day air temperature has increased by 1.3‒1.8°C compared with the period before 1976. The rate of warming was on the average 0.50°C/10 years. The volume of annual inflow increased by 12.4%. Three low-water and 4 high-water phases were identified in the reservoirs of the Upper Volga, including 29–31 low-water, 25–31 high-water, and 8–16 medium-water years. During the low-water phases, the volume of inflow into the reservoirs is 10–28% less than the long-term average, while in high-water years, it is 4–20% higher. The coefficient of water exchange in the reservoirs decreased or increased by 5–13% relative to the values obtained earlier. An increase in the winter and a decrease in the spring inflow were recorded in the reservoirs of the Upper Volga and in the Kuibyshev Reservoir. A tendency toward an increase in the normal annual water level was observed in the reservoirs in the upper part of the Volga and in the Kuibyshev Reservoir, while in the lower Volga, the normal annual level somewhat decreased. In low-water phases, the reservoir levels were on the average 17 cm below and in the high-water phases, 10 cm above the normal annual value. An increase in air temperature during the warm season in the reservoir water areas, on the average by 1.2°C, led to a synchronous increase in the temperature of the water mass by 1.1°C. At the same time, the heat content of the water mass of the reservoirs increased, on the average, by 24% in the upper part of the Volga and by as little as 2–11% in its lower part

Publisher

The Russian Academy of Sciences

Reference35 articles.

1. Второй оценочный доклад Росгидромета об изменениях климата и их последствиях на территории Российской Федерации: общее резюме. М.: Росгидромет, 2014. 60 с.

2. Георгиади А.Г., Милюкова И.П., Кашутина Е.А. Гидрологические изменения в регионах русской равнины в теплые эпохи геологического прошлого и сценарного будущего // Изв. РАН. Сер. географ. 2018. № 5. С. 70–80. https://doi.org/10.1134/S2587556618050060

3. Гидроэкологический режим водохранилищ Подмосковья (наблюдения, диагноз, прогноз) / Отв. редактор К.К. Эдельштейн. М.: Перо, 2015. 286 с.

4. Глобальный климат в 2001–2010 годы. Десятилетие экстремальных климатических явлений // Изменение климата. Информ. бюл. 2014. № 47. С. 9–10.

5. Горбаренко А.В., Варенцова Н.А., Киреева М.Б. Трансформация стока весеннего половодья и паводков в бассейне Верхней Волги под влиянием климатических изменений // Вод. хоз-во России: проблемы, технологии, управление. 2021. № 4. С. 6–28. https://doi.org/10.35567/1999-4508-2021-4-1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3