Neural Network Analysis as a Base of the Future System of Water–Environmental Regulation

Author:

Rozental O. M.1,Fedotov V. Kh.2

Affiliation:

1. Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

2. Ul’anov Chuvash State University, 428015, Cheboksary, Russia

Abstract

The article considers neural-network methods and technologies, which are relatively new even for many researchers and experts, as applied to water–environmental regulation. The efficiency of neural networks in this line of studies is due to their self-training, and the ensuing ability to reveal complex nonlinear relationships between the characteristics under control by data processing instruments, consisting of interrelated neurons. The methodology of artificial neural networks and the features of their functioning are described. Training and methodological examples are given to illustrate their potential use. A practical problem, considered as an example of ANN application, is the potential for improving the efficiency of identification of large enterprises polluting natural water among many water users in an industrial region. This is made with the use of data on the concentrations of some priority water-polluting metals at the hydrochemical gages in the Iset river near Ekaterinburg City. The neural-network analysis is shown to detect relationships between individual water quality characteristics at nearby gages. This allowed the conclusion that there exist close logistic economic relationships between water users, which help revealing water pollutants by the water footprint produced by plants working in the same branch. It is also shown that the use of ANN opens new ways for determining the contribution of industrial waste discharges to the level of water pollution by substances of dual genesis (natural and technogenic). The reliability of the conclusions is confirmed by the possibility to use the data on a given hydrochemical gage to satisfactorily predict water quality at a gage further downstream.

Publisher

The Russian Academy of Sciences

Reference32 articles.

1. Арнольд В.И. О функциях трех переменных // ДАН СССР. 1957. Т. 114. № 4. С. 679–681.

2. Боровиков В.П. Нейронные сети Statistica Neural Networks: Методология и технология современного анализа данных. М.: StatSoft, 2015. 354 с.

3. ГОСТ 27384-2002 Вода. Нормы погрешности измерений показателей состава и свойств.

4. ГОСТ Р ИСО 14046-2017 Экологический менеджмент. Водный след. Принципы, требования и руководящие указания.

5. Государственный доклад “О состоянии и использовании водных ресурсов Российской Федерации в 2020 году”. М.: Росводресурсы, НИА-Природа, 2022. 510 с.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3