Prerequisites for Development of Electrochemical Planar Sensor Based on RGO–PPD–SiW Composite for Determining Isoniazid Content in Biological Liquids

Author:

Pisarevskaya E. Yu.1,Klyuev A. L.1,Efimov O. N.2,Shapagin A. V.1,Andreev V. N.1

Affiliation:

1. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

2. Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Abstract

A new redox-active composite material based on reduced graphene oxide (RGO), poly-o-phenylenediamine (PPD), and silicotungstic acid (SiW) is studied. The SEM data showed an abrupt decrease in the content of oxygen atoms in the composite as compared to pure graphene oxide (GO). This is associated with its reduction to RGO in the course of RGO–PPD–SiW synthesis. A combination of RGO conductivity and redox catalysis due to the electroactive components (PPD and SiW) enables one to develop various sensors by applying RGO–PPD–SiW onto planar electrodes (screen-printed carbon electrodes, SPCE). In this work, the possibility of developing a sensor for the content of antituberculous antibiotic isoniazid (isonicotinic acid hydrazide C6H7N3O, INAH) is studied. Using the CVA method, it is shown that the concentration dependence of isoniazid oxidation current is linear. The electrocatalytic behavior of the composite during the isoniazid oxidation is also supported by the impedance spectroscopy.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3