Structure, Oxygen Mobility, and Electrochemical Characteristics of La1.7Ca0.3Ni1 ‒ xCuxO4 + δ Materials

Author:

Sadykov V. A.1,Sadovskaya E. M.1,Eremeev N. F.1,Maksimchuk T. Yu.23,Pikalov S. M.4,Filonova E. A.3,Pikalova N. S.34,Gilev A. R.3,Pikalova E. Yu.23

Affiliation:

1. Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

2. Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Science

3. Ural Federal University

4. Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Abstract

The Ruddlesden‒Popper phases pertain to numerous promising materials with the mixed ionic-electronic conductivity used in devices such as oxygen-conducting membranes, solid oxide fuel cells (SOFC), and electrolyzers, which operate in the intermediate temperature region. Their high total conductivity and oxygen mobility make these materials candidates for the mentioned applications. The structure, the oxygen mobility, and the electrochemical characteristics of the promising materials La1.7Ca0.3Ni1 – xCuxO4 + δ (x = 0–0.4) are studied. According to the high-precision XRD data, all synthesized materials are single-phased and have the tetragonal structure. The unit cell parameter c and the cell volume increase upon doping with copper. The content of overstoichiometric interstitial oxygen decreases with doping and the compositions with the high copper content become oxygen deficient. The samples are characterized by the nonuniform oxygen mobility. By and large, the trend for the decrease in the oxygen mobility with the increase in the Cu content is observed in the series of La1.7Ca0.3Ni1 – xCuxO4 + δ samples. By impedance spectroscopy studies, it is shown that the electrodes with the La1.7Ca0.3Ni1 – xCuxO4 + δ functional layers with the copper content x 0.2 have a higher electrochemical activity. The factors responsible for the efficiency of electrodes are analyzed. The results obtained in this study demonstrate that La1.7Ca0.3Ni0.6Cu0.4O4 + δ materials are the candidates for the air electrodes in electrochemical devices.

Publisher

The Russian Academy of Sciences

Reference37 articles.

1. Твердооксидные топливные элементы: проблемы, пути решения, перспективы развития и коммерциализации. Аналитический обзор [Электронный ресурс]: ФГБНУ “НИИ – Республиканский исследовательский научно-консультационный центр экспертизы”. Москва, 2015. 21 с. – Режим доступа: https:// studylib.ru/doc/2616406/tverdooksidnye-toplivnye-e-lementy-problemy-puti-resheniya (дата обращения: 05.07.2022).

2. Ahmad, M.Z., Ahmad, S.H., Chen, R.S., Ismail, A.F., Hazan, R., and Baharuddin, N.A., Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application, Int. J. Hydrog. Energy, 2022, vol. 47, no. 2, p. 1103.

3. Kilner, J.A. and Burriel, M., Materials for intermediate-temperature solid-oxide fuel cells, Ann. Rev. Mat. Res., 2014, vol. 44, no. 1, p. 365.

4. Hanif, M.B., Motola, M., Rauf, S., Li, C.J., and Li, C.X., Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion, Chem. Eng. J., 2022, vol. 428, p. 132603.

5. Han, N., Shen, Z., Zhao, X., Chen, R., and Thakur, V.K., Perovskite oxides for oxygen transport: chemistry and material horizons, Sci. Total Environ., 2022, vol. 806, no. 3, p.151213.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3