Structure, Oxygen Mobility, and Electrochemical Characteristics of La1.7Ca0.3Ni1 ‒ xCuxO4 + δ Materials
-
Published:2023-01-01
Issue:1
Volume:59
Page:43-55
-
ISSN:0424-8570
-
Container-title:Электрохимия
-
language:
-
Short-container-title:Èlektrohimiâ
Author:
Sadykov V. A.1, Sadovskaya E. M.1, Eremeev N. F.1, Maksimchuk T. Yu.23, Pikalov S. M.4, Filonova E. A.3, Pikalova N. S.34, Gilev A. R.3, Pikalova E. Yu.23
Affiliation:
1. Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences 2. Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Science 3. Ural Federal University 4. Institute of Metallurgy, Ural Branch, Russian Academy of Sciences
Abstract
The Ruddlesden‒Popper phases pertain to numerous promising materials with the mixed ionic-electronic conductivity used in devices such as oxygen-conducting membranes, solid oxide fuel cells (SOFC), and electrolyzers, which operate in the intermediate temperature region. Their high total conductivity and oxygen mobility make these materials candidates for the mentioned applications. The structure, the oxygen mobility, and the electrochemical characteristics of the promising materials La1.7Ca0.3Ni1 – xCuxO4 + δ (x = 0–0.4) are studied. According to the high-precision XRD data, all synthesized materials are single-phased and have the tetragonal structure. The unit cell parameter c and the cell volume increase upon doping with copper. The content of overstoichiometric interstitial oxygen decreases with doping and the compositions with the high copper content become oxygen deficient. The samples are characterized by the nonuniform oxygen mobility. By and large, the trend for the decrease in the oxygen mobility with the increase in the Cu content is observed in the series of La1.7Ca0.3Ni1 – xCuxO4 + δ samples. By impedance spectroscopy studies, it is shown that the electrodes with the La1.7Ca0.3Ni1 – xCuxO4 + δ functional layers with the copper content x 0.2 have a higher electrochemical activity. The factors responsible for the efficiency of electrodes are analyzed. The results obtained in this study demonstrate that La1.7Ca0.3Ni0.6Cu0.4O4 + δ materials are the candidates for the air electrodes in electrochemical devices.
Publisher
The Russian Academy of Sciences
Reference37 articles.
1. Твердооксидные топливные элементы: проблемы, пути решения, перспективы развития и коммерциализации. Аналитический обзор [Электронный ресурс]: ФГБНУ “НИИ – Республиканский исследовательский научно-консультационный центр экспертизы”. Москва, 2015. 21 с. – Режим доступа: https:// studylib.ru/doc/2616406/tverdooksidnye-toplivnye-e-lementy-problemy-puti-resheniya (дата обращения: 05.07.2022). 2. Ahmad, M.Z., Ahmad, S.H., Chen, R.S., Ismail, A.F., Hazan, R., and Baharuddin, N.A., Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application, Int. J. Hydrog. Energy, 2022, vol. 47, no. 2, p. 1103. 3. Kilner, J.A. and Burriel, M., Materials for intermediate-temperature solid-oxide fuel cells, Ann. Rev. Mat. Res., 2014, vol. 44, no. 1, p. 365. 4. Hanif, M.B., Motola, M., Rauf, S., Li, C.J., and Li, C.X., Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion, Chem. Eng. J., 2022, vol. 428, p. 132603. 5. Han, N., Shen, Z., Zhao, X., Chen, R., and Thakur, V.K., Perovskite oxides for oxygen transport: chemistry and material horizons, Sci. Total Environ., 2022, vol. 806, no. 3, p.151213.
|
|