MOLECULAR GENETIC ABNORMALITIES IN THE GENOME OF PATIENTS WITH Ph-NEGATIVE MYELOPROLIFERATIVE NEOPLASIA AFFECTED BY IONIZING RADIATION AS A RESULT OF THE CHORNOBYL NUCLEAR ACCIDENT

Author:

Poluben L., ,Neumerzhytska L.,Klymenko S.,Fraenkel P.,Balk C.,Shumeiko O., , , , ,

Abstract

Objective. to determine the frequency of major somatic mutations in the JAK2, MPL and CALR genes in the genome of patients with Ph-negative myeloproliferative neoplasms that occur in individuals who have been exposed to ionizing radiation as a result of the Chornobyl accident. Materials and methods. Molecular genetic analysis of genomic DNA samples isolated from blood was performed in 90 patients with Ph-negative myeloproliferative neoplasia (MPN) with a history of radiation exposure and 191 patients with spontaneous MPN utilizing allele-specific polymerase chain reaction (PCR). Results. The presence of major mutations in the genes JAK2, CALR and MPL was revealed in patients with MPN with a history of radiation exposure with a frequency 58.9 % (53 of 90), 12.2 % (11 of 90), and 0 % respectively, and without exposure with frequency 75.4 % (144 of 191), 3.1 % (6 out of 191) and 1.6 % (3 out of 191) respectively. Mutations JAK2 V617F in patients with spontaneous MPN were observed in each clinical form: polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). CALR mutations were detected exclusively in patients with PMF and ET, significantly more often in groups with a radiation exposure history (18.9 % and 33.3 %, vs. 4.2 % and 6.5 %) than without one. At the same time, the occurence of MPL mutations was determined only in patients with spontaneous MPN in 1.6 % of casees. Triple negative mutation status of genes JAK2, MPL and CALR prevailed in the group of patients with MPN with a history of radiation exposure and was 27.8 %, against 16.2 % in patients without radiation exposure (p = 0.05). Conclusions. Genomic research of patients with Ph-negative MPN revealed features of molecular genetic damage in those patients who were exposed to IR as a result of the Chornobyl accident and those with spontaneous MPN. The data obtained by determining of JAK2, MPL and CALR genes mutational status in the genome of patients with MPN is necessary to expand the understanding of the mechanism of leukogenesis, especially caused by radiation. Key words: myeloproliferative neoplasia, polycythemia vera, essential thrombocythemia, primary myelofibrosis, JAK2 V617F, MPL and CALR, ionizing radiation.

Publisher

National Research Center for Radiation Medicine of the NAMS of Ukraine

Subject

Radiology, Nuclear Medicine and imaging

Reference18 articles.

1. 1. Chekhun VF, Gluzman DF. Ionizing radiation and oncohematological diseases. Kiev: DIA; 2016. 284 p.

2. Allelic imbalances in radiation-associated acute myeloid leukemia;Klymenko;Genes (Basel),2011

3. 3. Mishcheniuk OY, Kostukevich OM, Dmytrenko IV, Sholoyko VV, Prokopenko IM, Martina ZV, et al. Molecular characterization of ph-negative myeloproliferative neoplasms in Ukraine. Exp Oncol. 2013;35(3):202-206.

4. Incidence of multiple myeloma among cleanup workers of the Chornobyl accident and their survival;Bazyka;Exp Oncol,2016

5. 5. Minchenko JM, Dyagil IS, Dmytrenko OO, Dmytrenko IV, Shlaykhtychenko TY, Gavrylenko TI, et al. Role of radiosensitivity and radioresistance genetic markers in hematological and cardiovascular disease in persons exposed after the Chornobyl accident. Probl Radiac Med Radiobiol. 2013;18:220-231.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3