Identifying Scientific Project-generated Data Citation from Full-text Articles: An Investigation of TCGA Data Citation

Author:

Li Jiao1,Zheng Si1,Kang Hongyu1,Hou Zhen1,Qian Qing1

Affiliation:

1. Institute of Medical Information and Library , Chinese Academy of Medical Sciences , Beijing 100020 , China

Abstract

Abstract Purpose In the open science era, it is typical to share project-generated scientific data by depositing it in an open and accessible database. Moreover, scientific publications are preserved in a digital library archive. It is challenging to identify the data usage that is mentioned in literature and associate it with its source. Here, we investigated the data usage of a government-funded cancer genomics project, The Cancer Genome Atlas (TCGA), via a full-text literature analysis. Design/methodology/approach We focused on identifying articles using the TCGA dataset and constructing linkages between the articles and the specific TCGA dataset. First, we collected 5,372 TCGA-related articles from PubMed Central (PMC). Second, we constructed a benchmark set with 25 full-text articles that truly used the TCGA data in their studies, and we summarized the key features of the benchmark set. Third, the key features were applied to the remaining PMC full-text articles that were collected from PMC. Findings The amount of publications that use TCGA data has increased significantly since 2011, although the TCGA project was launched in 2005. Additionally, we found that the critical areas of focus in the studies that use the TCGA data were glioblastoma multiforme, lung cancer, and breast cancer; meanwhile, data from the RNA-sequencing (RNA-seq) platform is the most preferable for use. Research limitations The current workflow to identify articles that truly used TCGA data is labor-intensive. An automatic method is expected to improve the performance. Practical implications This study will help cancer genomics researchers determine the latest advancements in cancer molecular therapy, and it will promote data sharing and data-intensive scientific discovery. Originality/value Few studies have been conducted to investigate data usage by government-funded projects/programs since their launch. In this preliminary study, we extracted articles that use TCGA data from PMC, and we created a link between the full-text articles and the source data.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3