Biceps brachii kası için maksimal ve sabit yük altında submaksimal kasılmalara göre elektromiyografik normalizasyon yöntemlerinin güvenilirliği ve korelasyonu

Author:

ARPINAR AVSAR Pınar1,ÇELİK Hüseyin2

Affiliation:

1. HACETTEPE ÜNİVERSİTESİ

2. HACETTEPE ÜNİVERSİTESİ, SPOR BİLİMLERİ FAKÜLTESİ

Abstract

Normalization of surface electromyography (sEMG) signal amplitude is considered as a necessary operation to enable comparable data on different muscles, individuals, and sessions. Previous studies usually suggested using the maximal contraction normalization procedure. However, that procedure might not always be possible or the best method in some sEMG studies. The purpose of this study is therefore twofold. The first is to investigate reliability of two different constant load normalization procedures (with and without feedback) at different constant-force submaximal contractions. The second is to investigate correlation of normalization factors obtained from maximal voluntary and standardized submaximal tasks. 18 young healthy participants took part in the study. Subjects performed three muscle contraction tasks, namely, (i) maximal voluntary contraction (MVC) task: isometric maximal contraction of biceps brachii muscle, (ii) force matching task (FM): matching 2.5 kg, 5.0 kg, 7.5 kg and 10.0 kg force with visual feedback, and (iii) load holding (LH) task: holding 2.5 kg, 5.0 kg, 7.5 kg and 10.0 kg weights without visual feedback. sEMG amplitude normalization factors were examined for three tasks. The results of the study suggested that the reliability of sEMG amplitude normalization factors from FM and LH tasks for four target forces or loads were high (intraclass correlation (ICC): 0.863-0.958) to very high (ICC: 0.970-0.995). Due to some limitations of the MVC maximal contraction normalization procedure, normalization to the maximal might not always be possible or the best method for some sEMG studies. In such cases, submaximal isometric load holding tasks could be an alternative to the MVC task for biceps brachii muscle.

Publisher

Hacettepe University

Subject

General Medicine

Reference26 articles.

1. Athreya, D. N., Van Orden, G., & Riley, M. A. (2012). Feedback about isometric force production yields more random variations. Neuroscience Letters, 513(1), 37–41. https://doi.org/10.1016/j.neulet.2012.02.002

2. Baweja, H. S., Patel, B. K., Martinkewiz, J. D., Vu, J., & Christou, E. A. (2009). Removal of visual feedback alters muscle activity and reduces force variability during constant isometric contractions. Experimental Brain Research, 197(1), 35–47. https://doi.org/10.1007/s00221-009-1883-5

3. Baweja, H. S., Patel, B. K., Neto, O. P., & Christou, E. A. (2011). The interaction of respiration and visual feedback on the control of force and neural activation of the agonist muscle. Human Movement Science, 30(6), 1022–1038. https://doi.org/10.1016/j.humov.2010.09.007

4. Besomi, M., Hodges, P. W., Clancy, E. A., Van Dieën, J., Hug, F., Lowery, M., Merletti, R., Søgaard, K., Wrigley, T., Besier, T., Carson, R. G., Disselhorst-Klug, C., Enoka, R. M., Falla, D., Farina, D., Gandevia, S., Holobar, A., Kiernan, M. C., McGill, K., … Tucker, K. (2020). Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix. Journal of Electromyography and Kinesiology, 53, 102438. https://doi.org/10.1016/j.jelekin.2020.102438

5. Buckthorpe, M. W., Hannah, R., Pain, T. G., & Folland, J. P. (2012). Reliability of neuromuscular measurements during explosive isometric contractions, with special reference to electromyography normalization techniques: Reliability of Explosive Neuromuscular Measurements. Muscle & Nerve, 46(4), 566–576. https://doi.org/10.1002/mus.23322

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3