Efficient segmentation and classification of the tumor using improved encoder-decoder architecture in brain MRI images

Author:

Ingle Archana1,Roja Mani1,Sankhe Manoj2,Patkar Deepak3

Affiliation:

1. TSEC, University of Mumbai, EXTC Department, Mumbai, India

2. MPSTME, NMIMS University, EXTC Department, Mumbai, India

3. Nanavati Max Super Speciality Hospital, Medical Services and Imaging Department, Mumbai, India

Abstract

Primary diagnosis of brain tumors is crucial to improve treatment outcomes for patient survival. T1-weighted contrast-enhanced images of Magnetic Resonance Imaging (MRI) provide the most anatomically relevant images. But even with many advancements, day by day in the medical field, assessing tumor shape, size, segmentation, and classification is very difficult as manual segmentation of MRI images with high precision and accuracy is indeed a time-consuming and very challenging task. So newer digital methods like deep learning algorithms are used for tumor diagnosis which may lead to far better results. Deep learning algorithms have significantly upgraded the research in the artificial intelligence field and help in better understanding medical images and their further analysis. The work carried out in this paper presents a fully automatic brain tumor segmentation and classification model with encoder-decoder architecture that is an improvisation of traditional UNet architecture achieved by embedding three variants of ResNet like ResNet 50, ResNet 101, and ResNext 50 with proper hyperparameter tuning. Various data augmentation techniques were used to improve the model performance. The overall performance of the model was tested on a publicly available MRI image dataset containing three common types of tumors. The proposed model performed better in comparison to several other deep learning architectures regarding quality parameters including Dice Similarity Coefficient (DSC) and Mean Intersection over Union (Mean IoU) thereby enhancing the tumor analysis.

Publisher

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3