Analyzing the Resilience of Convolutional Neural Networks Implemented on GPUs

Author:

Adam Khalid1,I. Mohd Izzeldin1,Ibrahim Younis2

Affiliation:

1. University Malaysia Pahang, College of Engineering, Department of Electrical Engineering 26300, Pahang, Malaysia

2. College of IoT Engineering, Hohai University Changzhou, Jiangsu 213022, China

Abstract

There have been an extensive use of Convolutional Neural Networks (CNNs) in healthcare applications. Presently, GPUs are the most prominent and dominated DNN accelerators to increase the execution speed of CNN algorithms to improve their performance as well as the Latency. However, GPUs are prone to soft errors. These errors can impact the behaviors of the GPU dramatically. Thus, the generated fault may corrupt data values or logic operations and cause errors, such as Silent Data Corruption. unfortunately, soft errors propagate from the physical level (microarchitecture) to the application level (CNN model). This paper analyzes the reliability of the AlexNet model based on two metrics: (1) critical kernel vulnerability (CKV) used to identify the malfunction and light- malfunction errors in each kernel, and (2) critical layer vulnerability (CLV) used to track the malfunction and light-malfunction errors through layers. To achieve this, we injected the AlexNet which was popularly used in healthcare applications on NVIDIA’s GPU, using the SASSIFI fault injector as the major evaluator tool. The experiments demonstrate through the average error percentage that caused malfunction of the models has been reduced from 3.7% to 0.383% by hardening only the vulnerable part with the overhead only 0.2923%. This is a high improvement in the model reliability for healthcare applications.

Publisher

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart Campus Reliability Based on the Internet of Things;International Conference on Information Systems and Intelligent Applications;2022-10-23

2. Reliability Assessment of Neural Networks in GPUs: A Framework For Permanent Faults Injections;2022 IEEE 31st International Symposium on Industrial Electronics (ISIE);2022-06-01

3. Optimizing Selective Protection for CNN Resilience;2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE);2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3