Investigation of THD Analysis in Residential Distribution Systems with Different Penetration Levels of Electric Vehicles

Author:

Badugu Jayababu1,Obulesu Y.P.2,Sai Babu Ch.3

Affiliation:

1. Department of Electrical and Electronics Engineering, VLITS, Guntur, Andhra Pradesh, India

2. School of Electrical Engineering, VIT Deemed to be University, Vellore, Tamilnadu, India

3. Electrical and Electronics Engineering Department, JNTUK, Kakinada, Andhra Pradesh, India

Abstract

Electric Vehicles (EVs) are becoming a viable transportation option because they are environmentally friendly and provide solutions to high oil prices. This paper investigates the impacts of electric vehicles on harmonic distortions in urban radial residential distribution systems. The accomplishment of EV innovation relies on the accessibility of EV charging stations. To meet the power demand of growing EVs, utilities are introducing EV charging stations in private and public areas; this led to a change in the residential distribution system infrastructure. In this paper, an urban radial residential distribution system with the integration of an electric vehicle charging facility is considered for investigation. An impact of different EV penetration levels on voltage distortion is analysed. Different penetration levels of EVs into the residential distribution system are considered. Simulation results are presented to validate the work carried out in this paper. An attempt has been made to establish the relationship between the level of penetration of the EVs and voltage distortion in terms of THD (Total Harmonic Distortion)

Publisher

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3