Thermodynamics, Kinetics and Mechanical Behavior of Model Metallic Glasses

Author:

,Akhtar Mst Alpona

Abstract

The thermophysical properties and deformation behavior of a systematic series of model metallic glasses was investigated. For Zr-based metallic glasses with all metallic constituents, the activation energy of glass transition was determined to be in the range of 74-173 kJ/mol while the activation energy of crystallization was in the range of 155-170 kJ/mol. The reduced glass transition temperature was roughly the same for all the alloys (~ 0.6) while the supercooled liquid region was in the range of 100-150 K, indicating varying degree of thermal stability. In contrast, the metal-metalloid systems (such as Ni-Pd-P-B) showed relatively higher activation energy of crystallization from short range ordering in the form of triagonal prism clusters with strongly bonded metal-metalloid atomic pairs. Deformation mechanisms of all the alloys were investigated by uniaxial compression tests, strain rate sensitivity (SRS) measurements, and detailed characterization of the fracture surface morphology. For the metal-metal systems, plasticity was found to be directly correlated with shear transformation zone (STZ) size, with systems of larger STZ size showing better plasticity. In metal-metalloid amorphous alloys, plasticity was limited by the distribution of STZ units, with lower activation energy leading to more STZ units and better plasticity. The alloys with relatively higher plasticity showed multiple shear bands while the brittle alloys showed a single dominant shear band and vein-pattern on the fracture surface indicating sudden catastrophic failure. The effect of chemistry change on thermodynamics, kinetics, and deformation behavior was investigated for the model binary NixP100-x and CoxP100-x metallic glasses. Alloys with higher phosphorous content showed greater activation energy of crystallization, indicating better thermal stability. In addition, metallic glasses with higher % P showed greater hardness, modulus, and serrated flow behavior during indentation that is characteristic of inhomogeneous deformation.

Publisher

University of North Texas Libraries

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3