Abstract
The current study explores the differences in metacognitive awareness perceptions of students who had high and low scores on TIMSS-like science tests. The sample consisted of 937 Omani students, 478 in Grade Five and 459 in Grade Nine. TIMSS-like tests were specially designed for both grade levels, and students also completed a metacognitive awareness perceptions inventory which explored their use of four main skills: planning, information management strategies, debugging strategies and evaluation. MANOVA was used to analyze the data. The findings indicated that students with high scores in the TIMSS-like test out-performed students with low scores in the test on all four metacognitive skills surveyed. This was true for all three performance areas analysed: performance in the TIMSS-like test as a whole, performance in lower-level test questions and performance in higher-level test questions. These findings highlight the extent to which students’ metacognitive skills influence their performance in science tests. The study recommends that students be trained to improve their metacognitive skills, reviews several methods for doing this, and suggests that such training might better prepare them for taking science tests. However, it also notes that further research is needed to explore the impact of metacognitive training on student performance in specific science examinations such as TIMSS.
Publisher
FSFEI HE Don State Technical University
Subject
Cognitive Neuroscience,Experimental and Cognitive Psychology,Education
Reference63 articles.
1. Adey, P. (1999). The Science of Thinking, and Science for Thinking: A Description of Cognitive Acceleration through Science Education (CASE). Innodata Monographs 2. UNESCO International Bureau of Education. Retrieved from http://www.ibe.unesco.org/fileadmin/user_upload/archive/Publications/innodata/inno02.pdf
2. Akben, N. (2020). Effects of the problem-posing approach on students’ problem solving skills and metacognitive awareness in science education. Research in Science Education, 50(3), 1143-1165. https://doi.org/10.1007/s11165-018-9726-7
3. Al-Balushi, S. M., & Martin-Hansen, L. (2019). The development of students’ justifications for their positions regarding two theoretical models: Electron cloud or sodium chloride crystal—After engaging in different learning activities. Journal of Research in Science Teaching, 56(8), 1011-1036. https://doi.org/10.1002/tea.21535
4. Al-Balushi, S. M., Al-Harthy, I. S., & Almehrizi, R. S. (2022). Attention Drifting Away While Test-Taking: Mind-Wandering in Students with Low-and High-Performance Levels in TIMSS-Like Science Tests. International Journal of Science and Mathematics Education, 1-22. https://doi.org/10.1007/s10763-022-10258-6
5. Al-Harthy, I. S. (2016). Prediction Accuracy: The Role of Feedback in 6th Graders’ Recall Predictions. International Education Studies, 9(3), 212-216. https://doi.org/10.5539/ies.v9n3p212
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献