Methods of simulation mathematical modeling of the Russian derivatives market in modern times

Author:

Karpinskaya T. A.1,Kudryavtsev O. E.1

Affiliation:

1. Russian Customs Academy

Abstract

Introduction. The paper is devoted to simulation modeling. Basic methods of the simulation mathematical modeling in the derivatives market are described. A group of realistic nonGaussian Levy processes that generalize the classical BlackScholes model is considered. The work objective is to study the most efficient methods of market forecasting, as well as the software implementation of the simulation mathematical modeling technique of the Russian derivatives market based on the Levy model. This research is relevant due to the demand for applications that simulate the dynamics of financial assets and evaluate options in realistic models of the derivatives market, allowing for jumps.Materials and Methods. Basic methods for forecasting the derivatives market, methods for determining the volatility rate at a known option price, are considered. The most effective types of Levy processes for the simulation mathematical modeling of the Russian derivatives market at the present stage are highlighted. The possibilities of the Java language for the implementation of mathematical methods are considered.Research Results. A program is developed in the Java programming language that implements the Levy mathematical model, which includes Gaussian and generalized Poisson processes. The program for calculating the mathematical method is created in the free integrated application development environment NetBeans IDE to work with any operating system.Discussion and Conclusions. The result of the simulation mathematical modeling analysis has shown that the most efficient methods in the derivatives market are those based on realistic non-Gaussian Levy processes. The software implementation of such mathematical methods can be used for educational purposes. The developed application has demonstrated high quality and speed of calculations using software resources.

Publisher

FSFEI HE Don State Technical University

Reference11 articles.

1. Вавилов, С. А. Финансовая математика. Стохастический анализ : вузовский учебник / С. А. Вавилов, К. Ю. Ерёменко. ― Москва : Юрайт, 2017. ― 244 с.

2. Осокина, Н. В. Производные финансовые инструменты в современной экономике / Н. В. Осокина, С. Ю. Носкова. // Вестник Кузбасс. гос. техн. ун-та. ― 2013. ― № 2. ― С. 149–151.

3. Pavlov, I. Optional Sampling Theorem for Deformed Submartingales / I. Pavlov & O. Nazarko // Theory of Probability & Its Applications. — 2015. — Vol. 59. — P. 499–507. DOI: https://doi.org/ 10.1137/ S0040585X97T987259

4. Безруков, А. В. Эконометрическая модель фондового индекса как инструмент статистического мониторинга устойчивости финансового рынка / А. В. Безруков, Ю. И. Аболенцев // Вестник университета. ― 2010. ― № 6. ― С. 236–241.

5. Сокуренко, А. П. Тенденции срочного рынка в России / А. П. Сокуренко // Концепт. ― 2015. ― Т. 13. ― С. 3206–3210. ― Режим доступа : http://e-koncept.ru/2015/85642.htm (дата обращения : 20.10.2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3