Tribocontact surface exploration after friction in hexanoic acid solution

Author:

Drogan E. G.1,Burlakova V. E.1

Affiliation:

1. Don State Technical University

Abstract

Introduction. The paper considers the evolution of friction coefficient of the pair of copper - steel alloy under friction in a hexanoic acid solution in various concentrations, and antiwear properties of the steel-steel friction pair in an oil-acidic medium. The work objective is to explore the effect of hexanoic acid additives on the tribological characteristics of friction pairs under the friction interaction in waterborne and paraffin-based formulations. Materials and Methods. Tribological studies of a brass-steel friction pair were carried out on the AE-5 end-type friction machine. Antiwear characteristics were explored on a four-ball friction machine (FBW) in accordance with the standard GOST 9490–75. When tested at the FBW, the objective parameters of the lubricity of the oiling compositions were: welding load (Рс); wear spot diameter (Dн), critical load (Рк). Roughness parameters of the servovite film were determined through the optical profilometry; its microgeometry and structure at the nanoscale – through the atomic force microscopy. Research Results. Tribological properties of the brass-steel tribocoupling in aqueous media and steel-steel one in petroleum paraffin-based media are studied. The dependence of the frictional characteristics of the brass-steel friction pair on the concentration of carboxylic acid is established. Its optimum concentration is specified, which provides the effect of wearlessness. A decrease in surface roughness is revealed as a result of the frictional interaction of a brass-steel friction pair in the hexanoic acid solution compared to the initial friction surface due to the formation of a sufficiently dense layer from fine-grained copper clusters with tight particle-size dispersion. The tribological characteristics of a steel-steel friction pair were found to depend on the composition of the lubricant. It is shown that the dependence of the size of the wear scar diameter (WSD) on the acid content in the base oil is nonmonotonic in nature with a pronounced minimum at a concentration of 0.1 mass. %. The critical load (Pк) at a content of 0.05 and 0.1 mass. % increases by 32%, welding load (Pc) - by 27%.Discussion and Conclusions. As a result of the tribological studies of a brass-steel friction pair in the hexanoic acid solution, it has been found that the optimum acid molar concentration in the lubricant composition is 0.1 mol/L. Under the frictional interaction of a brass-steel pair in the hexanoic acid solution, an antifriction copper film is formed on the friction surfaces, which contributes to a sharp decrease in the friction coefficient to 0.007 and metal wear of the friction pair to 25 times. As a result of the frictional interaction of a brasssteel friction pair in the hexanoic acid solution, a decrease in roughness is revealed compared to the initial friction surface. It is found that the frictional interaction of a brass-steel pair in the hexanoic acid solution causes a significant modification of the friction surface as a result of the deposition of finely dispersed copper clusters occurring in the lubricating medium composition and forming a servovite film. As a result of studies, it is found that the dependence of the WSD size on the acid content in the base oil is nonmonotonic in nature with a significant minimum at a concentration of 0.1 mass. %. It is shown that the addition of 0.1 mass. % of hexanoic acid into the lubricant composition exhibits the smallest wear of the steel-steel tribological pair, the WSD decreases to 0.497 mm, the critical load (Pк) and the welding load (Pc) increase by 32% and 27%, respectively.

Publisher

FSFEI HE Don State Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3