Stationary model of salt ion transfer in two-dimensional electrodialysis desalting channel in galvanostatic mode

Author:

Uzdenova A. M.1ORCID,Urtenov M. Kh.2ORCID

Affiliation:

1. Karachay-Circassian State University

2. Kuban State University

Abstract

Introduction. The theoretical description of the ion transport in membrane systems in the galvanostatic mode is presented. A desalting channel of the electrodialysis apparatus is considered as a membrane system. The work objectives are the development and verification of a two-dimensional mathematical model of the stationary transport of salt ions in the desalting channel of the electrodialysis apparatus for the galvanostatic mode.Materials and Methods. A new model of ion transfer is proposed. It is based on the Nernst –Planck – Poisson equations for the electric potential and on the equation for the electric current stream function. A numerical solution to the boundary value model problem by the finite element method is obtained using the Comsol Multiphysics software package.Research Results. The developed mathematical model enables to describe the stationary transfer of binary salt ions in the desalting channel of the electrodialysis apparatus. Herewith, the violation of the solution electroneutrality and the formation of the dilated domain of space charge at overlimiting currents in the galvanostatic mode are considered. A good agreement between the physicochemical characteristics of the transfer calculated by the models for the galvanostatic and potentiostatic modes implies adequacy of the constructed model.Discussion and Conclusions. The developed model can interpret the experimental study results of ion transfer in membrane systems if this process takes place in the galvanostatic mode. Some electrokinetic processes are associated with the appearance of a dilated domain of space charge at overlimiting currents. When describing the formation of this domain, it is possible to find out how the processes dependent on it affect the ion transfer in the galvanostatic mode.

Publisher

FSFEI HE Don State Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3