Visualization of internal defects using a deep generative neural network model and ultrasonic nondestructive testing

Author:

Vasiliev Р. V.1ORCID,Senichev А. V.ORCID,Giorgio I.2

Affiliation:

1. Don State Technical University

2. Università degli Studi dell'Aquila

Abstract

Introduction. The development of machine learning methods has given a new impulse to solving inverse problems in mechanics. Many studies show that along with well-behaved techniques of ultrasonic, magnetic, and thermal nondestructive testing, the latest methods are used, including those based on neural network models. In this paper, we demonstrate the potential application of machine learning methods in the problem of two-dimensional ultrasound imaging. Materials and Methods. We have developed an experimental model of acoustic ultrasonic non-destructive testing, in which the probing of the object under study takes place, followed by the recording of the response signals. The propagation of an ultrasonic wave is modeled by the finite difference method in the time domain. An ultrasonic signal received at the internal points of the control object is applied to the input of the convolutional neural network. At the output, an image that visualizes the internal defect is generated. Results. In the course of the performed complex of numerical experiments, a data set was generated for training a convolutional neural network. A convolutional neural network model, which is developed to solve the problem of visualizing internal defects based on methods of ultrasonic nondestructive testing, is presented. This model has a small size, which is 3.8 million parameters. Its simplicity and versatility provide high-speed learning and a wide range of applications in the class of related problems. The presented results show a high degree of information content of the ultrasonic response and its correspondence to the real form of an internal defect located inside the test object. The effect of geometric parameters of defects on the accuracy of the neural network model is investigated. Discussion and Conclusion. The results obtained have established that the proposed model shows a high operating accuracy (F1 > 0.95) in cases when the wavelength of the probe pulse is tens of times less than the size of the defect. We believe that the combination of the proposed methods in this approach can serve as a good starting point for future research in solving flaw defection problems and inverse problems in general.

Publisher

FSFEI HE Don State Technical University

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3