Stress-strain state of a combined toroidal baromembrane apparatus

Author:

Lazarev S. I.1ORCID,Lomakina О. V.1ORCID,Bulanov V. Е.1ORCID,Khorokhorina I. V.1ORCID

Affiliation:

1. Tambov State Technical University

Abstract

Introduction. Currently, the purification of wastewater and technological solutions by membrane methods is considered a promising way to neutralize liquid waste. Therefore, the task of developing an engineering method for calculating baromembrane devices is a challenge. Studies on methods involving calculation of design and process variables, membrane equipment design, research of technological features of membrane devices, selection of design schemes, as well as methods of strength and rigidity analysis, are investigated. Materials and Methods. Basic elements of the body of the combined membrane apparatus are considered, a design scheme is proposed, and a method for calculating the strength and rigidity of the main load-bearing element, the cover, is described. Results. The methods determine the required dimensions of shells and plates for the development of a combined membrane apparatus, and evaluate the strength properties of the devices of this class. The construction elements of the apparatus (primarily, the load-bearing covers) must meet not only the requirements of efficiency and quality of separation and cleaning of solutions, but also the conditions for safe operation. Therefore, the design of the device covers should be based on the optimal design dimensions (thicknesses of round plates, toroidal shells, and support rings). To test the method, the stress-strain state of the membrane apparatus structure was calculated for strength and rigidity. As an example, we consider one cover presented in the form of an open toroidal shell. The evaluation of the application of this technique, taking into account the fact that the shell is mated with a round plate in the inner diameter, and with a ring in the outer diameter, has provided the determination of the required parameters. Discussion and Conclusions. The obtained method of analytical description of the mechanical impact on the elements of the combined apparatus and the example of calculating the toroidal shell and plate, enables to evaluate the stressstrain state of the structure for strength and rigidity. The results of the calculation of covers made of various materials at different pressures are presented. Loading the combined apparatus with transmembrane pressure made it possible to determine the required dimensions of the shells and plates for its design and development.

Publisher

FSFEI HE Don State Technical University

Reference15 articles.

1. Development of a Membrane Distillation module for solar energy seawater desalination / A. Cipollina, M. G. Di Sparti, A. Tamburini, G. Micale // Chemical Engineering Research and Design. — 2012. — Vol. 90 (12). — P. 2101−2121. https://doi.org/10.1016/j.cherd.2012.05.021

2. Многокритериальная оптимизация параметров газоструйных аппаратов / Т. А. Юсупов, В. М. Емельянов, А. М. Гумеров, А. И. Рудаков // Вестник Казанского технологического университета. — 2003. — №2. — С. 131–136.

3. Иванец, В. Н. Интенсификация процесса смешивания путем оптимизации конструкции аппарата / В. Н. Иванец, А. В. Сибиль // Известия высших учебных заведений. Пищевая технология. — 2010. — №4(316). — С. 66–67.

4. The potential to enhance membrane module design with 3D printing technology / Jian-Yuan Lee, Wen See Tan, Jia An [et al.] // Journal of Membrane Science. — 2016. — Vol. 499. — P. 480–490. https://doi.org/10.1016/j.memsci.2015.11.008

5. Volfson, B. New Russian National Standards on Pressure Vessel and Apparatus Design and Strength Calculation / B. Volfson // Proc. ASME 2009 Pressure Vessels and Piping Conference. Vol. 1: Codes and Standards. Prague, Czech Republic. — 2009. — P. 531–535. https://doi.org/10.1115/PVP2009-77840

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3