Neural network technology for identifying defect sizes in half-plane based on time and positional scanning

Author:

Solov'ev A. N.1ORCID,Cherpakov A. V.1ORCID,Vasil’ev P. V.2ORCID,Parinov I. A.3ORCID,Kirillova E. V.4

Affiliation:

1. Don State Technical University; Southern Federal University

2. Don State Technical University

3. Southern Federal University

4. RheinMain University of Applied Sciences

Abstract

Introduction. The selected research topic urgency is due to the need for a quick assessment of the condition and reliability of materials used in various designs. The work objective was to study parameters of the influence of the defect on the response of the surface of the medium to the shock effect. The solution to the inverse problem of restoring the radius of a defect is based on the combination of a computational approach and the use of artificial neural networks (ANN). The authors have developed a technique for restoring the parameters of a defect based on the computational modeling and ANN. Materials and Methods. The problem is solved in the flat setting through the finite element method (FEM). In this paper, we used the linear equations of the elasticity theory with allowance for energy dissipation. The finite element method implemented in the ANSYS package was used as a method for solving the boundary value problem. MATLAB complex was used as a simulation of the application process (ANN). Results. A finite element model of a layered structure has been developed in a flat formulation of the problem in the ANSYS package. The problem of determining unsteady vibrations under pulsed loading for different radius variations of the defect is solved. Positional scanning of the research object is applied. Graphical dependences of the vibration amplitudes of points on the surface on the defect radius are plotted. Discussion and Conclusions. As a result of studying the dependences of vibration responses on the defect radius, the authors have developed an approach to restore this parameter in a flat structure based on a combination of the FEM and ANN. The research has shown that the amount of data used is sufficient for successful training of the constructed ANN model and identification of a hidden defect in the structure.

Publisher

FSFEI HE Don State Technical University

Reference37 articles.

1. Неразрушающие методы контроля / под ред. В. Я. Кершенбаума. — Москва : Наука и техника. — 1992. — 656 с.

2. Белокур, И. П. Дефектология и неразрушающий контроль / И. П. Белокур. — Киев : Выща школа. — 1990. — 208 с.

3. Интегральный диагностический признак идентификации повреждений в элементах стержневых конструкций / В. А. Акопьян, А. В. Черпаков, Е. В. Рожков, А. Н. Соловьев // Контроль. Диагностика. — 2012. — № 7. — С. 50–56.

4. Капцов, А. В. Определение параметров плоской эллиптической трещины в изотропном линейно упругом теле по результатам одного испытания на одноосное растяжение / А. В. Капцов, Е. И. Шифрин, П. С. Шушпанников // Известия Российской академии наук. Механика твердого тела. — 2012. — № 4. — С. 71– 88.

5. Sedov, A. V. Adaptive-spectral method of monitoring and diagnostic observability of static stresses of elements of mechanical constructions / A. V. Sedov, V. V. Kalinchuk, O. V. Bocharova // IOP Conference Series: Earth and Environmental Science. — 2017. — 87(8). — P. 082043.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer Vision Method for Automatic Detection of Microstructure Defects of Concrete;Sensors;2024-07-05

2. Features of Electrophysical Impact on Mortar and Concrete Mixtures;Management of Structure Formation and Properties of Cement Concretes;2022-08-23

3. Electrophysical Effect on Concrete Mixtures and Their Components;Management of Structure Formation and Properties of Cement Concretes;2022-08-23

4. Classification of Electrophysical Methods Regulating the Properties of Cement Concretes;Management of Structure Formation and Properties of Cement Concretes;2022-08-23

5. Modeling of Aggregate and Local Structural Characteristics of V-, CF-, and VCF-Concretes;Management of Structure Formation and Properties of Cement Concretes;2022-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3