Mechanical and finite element models of corneal keratoprostheses

Author:

Soloviev A. N.1ORCID,Glushko N. I.1ORCID,Epikhin A. N.2ORCID,Swain M.3ORCID,Lesnyak О. N.1ORCID,Ivanov А. Е.1ORCID

Affiliation:

1. Don State Technical University

2. Rostov State Medical University

3. Sydney University

Abstract

Introduction. When developing ocular prostheses, a number of problems arise, one of which is the construction of the connection between the hard optical part and the soft corneal tissue. Their Young's modules can differ by three orders of magnitude. In this case, the problem arises of creating an intermediate layer, possibly with gradient properties, whose purpose is to exclude injury to soft biological tissues. Two types of keratoprostheses are considered: the first type with a support plate and the second type with an intermediate functionally gradient layer. The stress-strain state of the prosthesis is calculated for the first type. For the second type, analytical and finite element modeling of the interaction of a cylindrical optical prosthesis, an intermediate inhomogeneous layer, and the cornea was carried out in the elastic media. Two versions are considered: discounting the curvature (circular plate or plate) and with account of the curvature (spherical dome or shell). The work objective is to study the stress-strain state of the keraprosthesis and cornea in the contact area. Materials and Methods. Mathematical models of the structures under consideration are the boundary value problems of the linear elasticity theory. The analytical solution is constructed for a simplified model in the form of a composite circular plate. Spatial three-dimensional problems and axisymmetric problems are solved by the finite element method. Finite element modeling of the considered structures was performed in the CAE package ANSYS and ACELAN. Results. CAD models of keratoprostheses with conditions of fixing and loading are constructed. The load acting on the keraprosthesis under the effect of intraocular pressure was determined. The stress-strain state of the keratoprosthesis and cornea elements was calculated. Special attention was paid to the area of its contact with the keratoprosthesis. Discussion and Conclusions. The results of calculating the axial displacements and mechanical stresses in the first type of keratoprosthesis show that the selected geometric parameters meet the kinematic and strength requirements. The proposed models of the deformed state of soft biological tissues provide assessing their injury when using a keratoprosthesis of the second type, as well as selecting the geometric parameters and gradient properties of the intermediate layer.

Publisher

FSFEI HE Don State Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3