Validation of Reliability Indices during Experimental Development of a Complex Technical Series System

Author:

Tsarev O. Yu.1ORCID,Tsarev Yu. A.2

Affiliation:

1. “Business Solutions and Technologies” JSC

2. Don State Technical University

Abstract

Introduction. The article studies the problem of validating the specified levels of reliability during experimental development of a complex technical series system. Such tasks arise when it is required to make a decision on testing the system as part of a larger one or on the completion of experimental development and the start of series production. The study is aimed at validating the reduction of the experimental development time. The task is to determine whether the hypothesis Но is accepted or rejected.Materials and Methods. To implement the research objective and task, a critical area described by the inequality was constructed based on the test results. The formulation of the requirements validation task was based on well-known approaches to testing statistical hypotheses. The conceptual apparatus of information theory, probability, and statistics was involved. The theoretical and applied literature on mathematical methods in reliability theory was studied. The particular tasks of the work were solved by known ways. Thus, the probability of obtaining the exact number of successful outcomes in a certain number of experiments was determined by the Bernoulli scheme. The exact confidence interval based on the binomial distribution was derived from the Clopper-Pearson relation. The theorem of A.D. Solovyov and R. A. Mirny made it possible to assess the system reliability based on the test results of its components.Results. Control rules adequate to the stage of experimental development (with insufficient data on the technical system) and the stage of series production were mathematically defined. The probability of a successful outcome when testing technical systems was represented by:– the probability of event for a system element;– confidence value;– required scope of tests.In these terms, the null and alternative hypotheses and the corresponding reliability control procedures were investigated. Two provisions were considered. The first one provided using the null confidence hypothesis Но = {Р РТ} and an alternative Н = { Р < РТ} to confirm the requirements (РТ, γ) for the reliability indicator of one parameter for any (РТ, γ). In this case, one trouble-free test was enough. The second provision considered a sequential technical system with independent elements that were tested separately from the system according to the Bernoulli scheme for one parameter. We considered the requirements for the system in the form of a set of values (РТ, γ) and the requirements for any of its elements (РТi, γ). They coincided when the planned outcome of the tests corresponded to the cases when the ratio Р= lim 1≤iN : Р i = Р m was fulfilled, and the null alternative hypothesis was selected from the theory of statistical hypothesis testing.Discussion and Conclusions. The experimental development strategy should be implemented in two stages: the search and validation of the reliability of the elements through a series of fail-safe tests. In this case, the planned scope of tests of each element is determined taking into account the confidence probability, the lower limit of the confidence interval, and the requirements for reliability indices of one parameter of the technical system. If the use of the null confidence hypothesis is acceptable, one fail-safe test is sufficient to confirm the requirements for the reliability index.

Publisher

FSFEI HE Don State Technical University

Reference12 articles.

1. Belov VM, Novikov SN, Solonskaya OI. Teoriya informatsii. Moscow: GLT; 2012. 143 p. (In Russ.)

2. Godin AM. Statistika. Moscow: Dashkov i K°; 2016. 451 p. (In Russ.)

3. Müller K. The New Science of Cybernetics: A Primer. Journal of Systemics, Cybernetics and Informatics. 2013;11:32–46.

4. Hamdy A Taha. Operations Research: An Introduction, 9th ed. New York: Prentice Hall; 2011. 813 p.

5. Pavlov IV. Confidence Limits for System Reliability Indices with Increasing Function of Failure Intensity. Journal of Machinery Manufacture and Reliability. 2017;2:70–75.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3