Placement of Multiple Virtual Objects in Physical Space in Augmented Reality Applications

Author:

Alpatova M. V.1ORCID,Rudyak Yu. V.1ORCID

Affiliation:

1. Moscow Polytechnic University

Abstract

Introduction. The challenges of placing virtual objects in a real-world environment limit the potential of augmented reality (AR) technology. This situation identifies a gap in scientific knowledge that requires additional research. Therefore, the main task of this study was to develop a method for optimal placement of virtual objects, in which the objective function of comfort was minimized. This approach is aimed at improving AR systems and developing the corresponding theory.Materials and Methods. The conducted research was based on the analysis of the placement of virtual objects in AR/VR applications with particular emphasis on optimization. The concept of comfort of placement was proposed, taking into account the size of the object and the distance to the boundaries of free space in X, Y, Z coordinates.Results. As part of the study, formulas were obtained for the optimal placement of objects with an arbitrary comfort function. The basic criterion was to minimize the difference between comfort levels from different sides of the object. It was found that a successful placement of objects required taking into account their size and comfort zones, as well as solving a system of n linear equations.Discussion and Conclusion. The results obtained make an important contribution to the study of the problem of placing virtual objects in AR/VR/MR. They open up new opportunities for improving user interaction and conducting further research in the field of spatial computing. Possible directions for further development are dynamic adjustments and integration of the results into various XR scenarios.

Publisher

FSFEI HE Don State Technical University

Reference9 articles.

1. Mekni M, Lemieux A. Augmented Reality: Applications, Challenges and Future Trends. In: British Library Conference Proceedings: Applied Computational Science. Athens: WSEAS; 2014. P. 205–214. URL: https://www.cs.ucf.edu/courses/cap6121/spr2020/readings/Mekni2014.pdf (accessed: 29.03.2023)

2. Rick Van Krevelen, Ronald Poelman. A Survey of Augmented Reality Technologies, Applications and Limitations. International Journal of Virtual Reality. 2019;9(2):1–20. https://doi.org/10.20870/IJVR.2010.9.2.2767

3. Rui Nóbrega, Diogo Cabral, Giulio Jacucci, et al. NARI: Natural Augmented Reality Interface - Interaction Challenges for AR Applications. In: Proc. Int. Conf. on Computer Graphics Theory and Applications (GRAPP 2015). Pasadena, CA: Morgan Kaufmann Publishers Inc.; 2015. P. 504–510. https://doi.org/10.13140/RG.2.1.2240.1440

4. Kurkovsky SA, Koshy R, Novak V, et al. Current Issues in Handheld Augmented Reality. In: Proc. 2012 Int. Conf. on Communications and Information Technology (ICCIT): 2012 International Conference on Communications and Information Technology (ICCIT). Hammamet: IEEE; 2012. P. 68–72. https://doi.org/10.1109/ICCITechnol.2012.6285844

5. Irshad Sh, Rambli DRA. Advances in Mobile Augmented Reality from User Experience Perspective: A Review of Studies. In book: HB Zaman, et al. (eds.). Advances in Visual Informatics. Cham: Springer International Publishing; 2017. P.466–477. https://doi.org/10.1007/978-3-319-70010-6_43

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3