Study on Dynamic Response Characteristics of Different Asphalt Pavement Structures Based on ALF Test

Author:

Guangcong Ni1ORCID,Tiraturyan A. N.2ORCID,Uglova E. V.2ORCID,Vorobev A. V.2ORCID

Affiliation:

1. Shan Dong JiaoTong University

2. Don State Technical University

Abstract

Introduction. In recent years, one of the main trends in the field of testing road structures has become field study of their large-scale models at the accelerated load facility (ALF). It can significantly reduce the cost of selecting the most economical  and  durable  pavement  designs.  However,  the  results  obtained  on  the ALF  are  often  relative,  since  they practically do not correlate with the results of laboratory and field tests on real objects. This study is aimed at a comprehensive investigation of the response of a road structure to a dynamic load, the establishment of patterns of fatigue failure of asphalt concrete layers during the accelerated testing and full-scale tests on real objects.Materials and Methods. During testing, an accelerated load facility was used, located on the territory of the ShanDong Transport University. When conducting field tests, a dynamic loading unit with a falling weight FWD Primax 1500 was used, which recorded the deflection bowl on the surface of the structure under study. To record the dynamic response in the arrangement of the road structure, a complex of strain gauge sensors was used, which made it possible to register both compressive stresses and tensile strains in different layers. The results obtained under natural conditions were compared to the results obtained on the mathematical FEM model.Results. The research results have shown that the thickness of the lower coating layer is the main factor affecting the amount of vertical deformation of the pavement, which must be taken into account at the design stage of the pavement structure. Thus, with a thickness of the upper layer of the base of 10 cm, the vertical deformation was 100 µm, and with a thickness of 20 cm – 55  µm,  provided  that  the  overall strength of the structure was ensured. The number of load application cycles on the ALF had a minimal effect on the selected asphalt concrete samples during split tensile tests.Discussion and Conclusion. The adequacy of the results obtained in the course of accelerated testing of road structures was shown through a comprehensive comparison of numerical simulation data and full-scale tests, and the adequacy of the applied calculation methods was validated. The results of the study can be further applied in the road industry to develop and improve the regulatory framework for the design of non-rigid pavement under conditions of increased loads and heavy traffic.

Publisher

FSFEI HE Don State Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3