Polyethylene Resistance to Oil and Associated Water

Author:

Antipas I. R.1ORCID

Affiliation:

1. Don State Technical University

Abstract

Introduction. Polyethylene is the most widely used material in various fields of the national economy, and products made of it have essential advantages, such as lightness, insolubility in organic solutions with quite satisfactory strength. However, the mechanism of its destruction is quite complex and depends on the working conditions and substances, which are in contact with it. The research purpose was to study the polyethylene resistance to oil and associated water under the static and dynamic conditions and at room temperature.Methods and Materials. The research was carried out on a laboratory device for passing various liquids (oil, associated and distilled water) in polyethylene pipes, assembled by the author of the article. While working, methods of statistical and dynamic data processing were applied.Results. Based on the results of previous experiments, graphs were plotted for the change in the weight and volume of immersed granules over time. They have shown that polyethylene has a quadratic dependence, and diffusion for the three liquids studied in this work (distilled water, accompanying water and oil) is described by Fick's law. This indicates the fact that the rate of liquid diffusion through polyethylene is the key factor.Discussion and Conclusions. The obtained results have shown that the rate of liquid diffusion through polyethylene is the key factor. Immersion in oil has a greater impact than immersion in associated or distilled water due to the presence of salts. It has been found out that the relative change in the weight and thickness of the polyethylene pipe walls through which oil passes is greater than those through which the associated water passes. Moreover, the microscopic cross sections images in the samples before and after the tests have confirmed the obtained results.

Publisher

FSFEI HE Don State Technical University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3